9 research outputs found

    Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP

    Get PDF
    The anti-termination protein, HutP, regulates the gene expression of the hut (histidine utilization) operon of Bacillus subtilis, by destabilizing the hut terminator RNA located upstream of the coding region encoding l-histidine degradation enzymes. On the basis of biochemical, in vivo and X-ray structural analyses, we now report that HutP uses its dual RNA-binding surfaces to access two XAG-rich regions (sites I and II) within the terminator RNA to mediate the destabilization process. In this process, HutP initiates destabilization at the 5′-end of its mRNA by binding to the first XAG-rich region (site I) and then accesses the second XAG-rich region (site II), located downstream of the stable G-C-rich segment of the terminator stem. By this action, HutP appears to disrupt the G-C-rich terminator stem, and thus prevents premature termination of transcription in the RNA segment preceding the regions encoding for the histidine degradation enzymes

    A Structural Study of Ion Permeation in OmpF Porin from Anomalous X‑ray Diffraction and Molecular Dynamics Simulations

    No full text
    OmpF, a multiionic porin from <i>Escherichia coli</i>, is a useful protypical model system for addressing general questions about electrostatic interactions in the confinement of an aqueous molecular pore. Here, favorable anion locations in the OmpF pore were mapped by anomalous X-ray scattering of Br<sup>–</sup> ions from four different crystal structures and compared with Mg<sup>2+</sup> sites and Rb<sup>+</sup> sites from a previous anomalous diffraction study to provide a complete picture of cation and anion transfer paths along the OmpF channel. By comparing structures with various crystallization conditions, we find that anions bind in discrete clusters along the entire length of the OmpF pore, whereas cations find conserved binding sites with the extracellular, surface-exposed loops. Results from molecular dynamics simulations are consistent with the experimental data and help highlight the critical residues that preferentially contact either cations or anions during permeation. Analysis of these results provides new insights into the molecular mechanisms that determine ion selectivity in OmpF porin

    A Structural Study of Ion Permeation in OmpF Porin from Anomalous X‑ray Diffraction and Molecular Dynamics Simulations

    No full text
    OmpF, a multiionic porin from <i>Escherichia coli</i>, is a useful protypical model system for addressing general questions about electrostatic interactions in the confinement of an aqueous molecular pore. Here, favorable anion locations in the OmpF pore were mapped by anomalous X-ray scattering of Br<sup>–</sup> ions from four different crystal structures and compared with Mg<sup>2+</sup> sites and Rb<sup>+</sup> sites from a previous anomalous diffraction study to provide a complete picture of cation and anion transfer paths along the OmpF channel. By comparing structures with various crystallization conditions, we find that anions bind in discrete clusters along the entire length of the OmpF pore, whereas cations find conserved binding sites with the extracellular, surface-exposed loops. Results from molecular dynamics simulations are consistent with the experimental data and help highlight the critical residues that preferentially contact either cations or anions during permeation. Analysis of these results provides new insights into the molecular mechanisms that determine ion selectivity in OmpF porin

    A Structural Study of Ion Permeation in OmpF Porin from Anomalous X‑ray Diffraction and Molecular Dynamics Simulations

    No full text
    OmpF, a multiionic porin from <i>Escherichia coli</i>, is a useful protypical model system for addressing general questions about electrostatic interactions in the confinement of an aqueous molecular pore. Here, favorable anion locations in the OmpF pore were mapped by anomalous X-ray scattering of Br<sup>–</sup> ions from four different crystal structures and compared with Mg<sup>2+</sup> sites and Rb<sup>+</sup> sites from a previous anomalous diffraction study to provide a complete picture of cation and anion transfer paths along the OmpF channel. By comparing structures with various crystallization conditions, we find that anions bind in discrete clusters along the entire length of the OmpF pore, whereas cations find conserved binding sites with the extracellular, surface-exposed loops. Results from molecular dynamics simulations are consistent with the experimental data and help highlight the critical residues that preferentially contact either cations or anions during permeation. Analysis of these results provides new insights into the molecular mechanisms that determine ion selectivity in OmpF porin

    A Structural Study of Ion Permeation in OmpF Porin from Anomalous X‑ray Diffraction and Molecular Dynamics Simulations

    No full text
    OmpF, a multiionic porin from <i>Escherichia coli</i>, is a useful protypical model system for addressing general questions about electrostatic interactions in the confinement of an aqueous molecular pore. Here, favorable anion locations in the OmpF pore were mapped by anomalous X-ray scattering of Br<sup>–</sup> ions from four different crystal structures and compared with Mg<sup>2+</sup> sites and Rb<sup>+</sup> sites from a previous anomalous diffraction study to provide a complete picture of cation and anion transfer paths along the OmpF channel. By comparing structures with various crystallization conditions, we find that anions bind in discrete clusters along the entire length of the OmpF pore, whereas cations find conserved binding sites with the extracellular, surface-exposed loops. Results from molecular dynamics simulations are consistent with the experimental data and help highlight the critical residues that preferentially contact either cations or anions during permeation. Analysis of these results provides new insights into the molecular mechanisms that determine ion selectivity in OmpF porin
    corecore