42 research outputs found

    Trypacidin, a Spore-Borne Toxin from Aspergillus fumigatus, Is Cytotoxic to Lung Cells

    Get PDF
    Inhalation of Aspergillus fumigatus conidia can cause severe aspergillosis in immunosuppressed people. A. fumigatus produces a large number of secondary metabolites, some of which are airborne by conidia and whose toxicity to the respiratory tract has not been investigated. We found that spores of A. fumigatus contain five main compounds, tryptoquivaline F, fumiquinazoline C, questin, monomethylsulochrin and trypacidin. Fractionation of culture extracts using RP-HPLC and LC-MS showed that samples containing questin, monomethylsulochrin and trypacidin were toxic to the human A549 lung cell line. These compounds were purified and their structure verified using NMR in order to compare their toxicity against A549 cells. Trypacidin was the most toxic, decreasing cell viability and triggering cell lysis, both effects occurring at an IC50 close to 7 µM. Trypacidin toxicity was also observed in the same concentration range on human bronchial epithelial cells. In the first hour of exposure, trypacidin initiates the intracellular formation of nitric oxide (NO) and hydrogen peroxide (H2O2). This oxidative stress triggers necrotic cell death in the following 24 h. The apoptosis pathway, moreover, was not involved in the cell death process as trypacidin did not induce apoptotic bodies or a decrease in mitochondrial membrane potential. This is the first time that the toxicity of trypacidin to lung cells has been reported

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    A concept for integrated care pathways for atopic dermatitis-A GA2 LEN ADCARE initiative

    Get PDF
    INTRODUCTION: The integrated care pathways for atopic dermatitis (AD-ICPs) aim to bridge the gap between existing AD treatment evidence-based guidelines and expert opinion based on daily practice by offering a structured multidisciplinary plan for patient management of AD. ICPs have the potential to enhance guideline recommendations by combining interventions and aspects from different guidelines, integrating quality assurance, and describing co-ordination of care. Most importantly, patients can enter the ICPs at any level depending on AD severity, resources available in their country, and economic factors such as differences in insurance reimbursement systems. METHODS: The GA2 LEN ADCARE network and partners as well as all stakeholders, abbreviated as the AD-ICPs working group, were involved in the discussion and preparation of the AD ICPs during a series of subgroup workshops and meetings in years 2020 and 2021, after which the document was circulated within all GAL2 EN ADCARE centres. RESULTS: The AD-ICPs outline the diagnostic procedures, possible co-morbidities, different available treatment options including differential approaches for the pediatric population, and the role of the pharmacists and other stakeholders, as well as remaining unmet needs in the management of AD. CONCLUSION: The AD-ICPs provide a multidisciplinary plan for improved diagnosis, treatment, and patient feedback in AD management, as well as addressing critical unmet needs, including improved access to care, training specialists, implementation of educational programs, assessment on the impact of climate change, and fostering a personalised treatment approach. By focusing on these key areas, the initiative aims to pave the way for a brighter future in the management of AD

    Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A

    Get PDF
    Background: Anaerobic fungi reside in the rumen and alimentary tract of herbivores where they play an important role in the digestion of ingested plant biomass. The anaerobic fungal isolate Orpinomyces sp. strain C1A is an efficient biomass degrader, capable of simultaneous saccharification and fermentation of the cellulosic and hemicellulosic fractions in multiple types of lignocellulosic biomass. To understand the mechanistic and regulatory basis of biomass deconstruction in anaerobic fungi, we analyzed the transcriptomic profiles of C1A when grown on four different types of lignocellulosic biomass (alfalfa, energy cane, corn stover, and sorghum) versus a soluble sugar monomer (glucose).Results: A total of 468.2 million reads (70.2 Gb) were generated and assembled into 27,506 distinct transcripts. CAZyme transcripts identified included 385, 246, and 44 transcripts belonging to 44, 13, and 8 different glycoside hydrolases (GH), carbohydrate esterases, and polysaccharide lyases families, respectively. Examination of CAZyme transcriptional patterns indicates that strain C1A constitutively transcribes a high baseline level of CAZyme transcripts on glucose. Although growth on lignocellulosic biomass substrates was associated with a significant increase in transcriptional levels in few GH families, including the highly transcribed GH1 B-glucosidase, GH6 cellobiohydrolase, and GH9 endoglucanase, the transcriptional levels of the majority of CAZyme families and transcripts were not significantly altered in glucose-grown versus lignocellulosic biomass-grown cultures. Further, strain C1A co-transcribes multiple functionally redundant enzymes for cellulose and hemicellulose saccharification that are mechanistically and structurally distinct. Analysis of fungal dockerin domain-containing transcripts strongly suggests that anaerobic fungal cellulosomes represent distinct catalytic units capable of independently attacking and converting intact plant fibers to sugar monomers.Conclusions: Collectively, these results demonstrate that strain C1A achieves fast, effective biomass degradation by the simultaneous employment of a wide array of constitutively-transcribed cellulosome-bound and free enzymes with considerable functional overlap. We argue that the utilization of this indiscriminate strategy could be justified by the evolutionary history of anaerobic fungi, as well as their functional role within their natural habitat in the herbivorous gut.Peer reviewedMicrobiology and Molecular Genetic

    Changes in Certain Serum and Faeces Parameters in Weaned Piglets as a Response to Nutritional Stress

    Get PDF
    Weaning is associated with several stress factors and their effects on the piglet’s body are fairly well known. Thus, changes were estimated in certain serum and faecal parameters after weaning owing to dietary protein level, though essential amino acid (AA) levels were maintained or reduced. Eighteen Topigs piglets were assigned randomly to three homogenous groups. The dietary protein level was reduced by 10% in diets 1 and 2 compared with diet C. Diet 1 had similar levels of essential AA to diet C, while the levels of essential AA in diet 2 were reduced by 10%. Blood samples were collected by jugular venipuncture in the farrowing unit on four occasions: before and after separation from the sow; the day after transfer to the nursery; and seven days after weaning. Faecal excreta were collected daily. No major health problems arose, and total pathogen germs were not different among treatments. Cortisol concentration reached similar values to those from the farrowing unit seven days after weaning. Whatever the diet, vitamin E in plasma decreased significantly in the first seven days post weaning. The reduction of dietary protein, as well as essential AAs, adversely affected the concentration of Cu (by 17.3%) in plasma. Selenium concentration in plasma increased slightly, irrespective of diet. The authors conclude that providing dietary protein at a particular level (diet 1), while maintaining AAs at normal level, limits faecal nitrogenous content without significantly modifying stress indicators (except vitamin E) or faecal composition.Keywords: Germs, Piglets, Protein, Stress Indicators, Weanin
    corecore