77 research outputs found

    Rabies Outbreak among Livestock in a Pastoralist Community, Southern Ethiopia

    Get PDF
    BACKGROUND: Rabies still poses a significant health problem in most of African countries, where the majority of the cases result from dog bites. The situations in the marginalized pastoral areas were not well documented.CASE: In September 2015, rabid wild fox entered the pastoralist village and bit a domestic dog. The victim dog had turned rabid after four months and bit livestock, and rabies outbreak occurred in the family livestock. Consequently, one bull, one lactating cow, one calf, two donkeys and one heifer died of outbreak. The head of one heifer was removed and transported within 24 hours to the Rabies Referral Laboratory of Ethiopian Public Health Institute in Addis Ababa. The sample was confirmed as strong positive for lyssa virus antigen by Direct Fluorescent Anti-Body Test. This was the first confirmed case report from southern Oromia pastoralists. The occurrence of rabies cases across the district was also reported by veterinary and human health officers.CONCLUSION: Integrated intervention strategy and collaboration of animal health, human health and wildlife authority is needed. To halt the ongoing outbreak in the district, immediate response from the Government is recommended.

    Zoonotic Transmission of Tuberculosis Between Pastoralists and Their Livestock in South-East Ethiopia

    Get PDF
    Despite huge global efforts in tuberculosis (TB) control, pastoral areas remain under-investigated. During two years sputum and fine needle aspirate (FNA) specimens were collected from 260 Ethiopian pastoralists of Oromia and Somali Regional States with suspected pulmonary TB and from 32 cases with suspected TB lymphadenitis. In parallel, 207 suspected tuberculous lesions were collected from cattle, camels and goats at abattoirs. All specimens were processed and cultured for mycobacteria; samples with acid-fast stained bacilli (AFB) were further characterized by molecular methods including genus and deletion typing as well as spoligotyping. Non-tuberculous mycobacteria (NTM) were sequenced at the 16S rDNA locus. Culturing of AFB from human sputum and FNA samples gave a yield of 174 (67%) and 9 (28%) isolates, respectively. Molecular typing was performed on 173 of these isolates and 160 were confirmed as Mycobacterium tuberculosis, three as M. bovis, and the remaining 10 were typed as NTMs. Similarly, 48 AFB isolates (23%) yielded from tuberculous lesions of livestock, of which 39 were molecular typed, including 24 M. bovis and 4 NTMs from cattle, 1 M. tuberculosis and 1 NTM from camels and 9 NTMs from goats. Isolation of M. bovis from humans and M. tuberculosis from livestock suggests transmission between livestock and humans in the pastoral areas of South-East Ethiopi

    An African origin for Mycobacterium bovis

    Get PDF
    Mycobacterium bovis; and; Mycobacterium caprae; are two of the most important agents of tuberculosis in livestock and the most important causes of zoonotic tuberculosis in humans. However, little is known about the global population structure, phylogeography and evolutionary history of these pathogens.; We compiled a global collection of 3364 whole-genome sequences from; M.bovis; and; M.caprae; originating from 35 countries and inferred their phylogenetic relationships, geographic origins and age.; Our results resolved the phylogenetic relationship among the four previously defined clonal complexes of; M.bovis; , and another eight newly described here. Our phylogeographic analysis showed that; M.bovis; likely originated in East Africa. While some groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world.; Our results allow a better understanding of the global population structure of; M.bovis; and its evolutionary history. This knowledge can be used to define better molecular markers for epidemiological investigations of; M.bovis; in settings where whole-genome sequencing cannot easily be implemented.; During the last few years, analyses of large globally representative collections of whole-genome sequences (WGS) from the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages have enhanced our understanding of the global population structure, phylogeography and evolutionary history of these pathogens. In contrast, little corresponding data exists for M. bovis, the most important agent of tuberculosis in livestock. Using whole-genome sequences of globally distributed M. bovis isolates, we inferred the genetic relationships among different M. bovis genotypes distributed around the world. The most likely origin of M. bovis is East Africa according to our inferences. While some M. bovis groups remained restricted to East and West Africa, others have subsequently dispersed to different parts of the world driven by cattle movements

    Field evaluation of specific mycobacterial protein-based skin test for the differentiation of Mycobacterium bovis-infected and Bacillus Calmette Guerin-vaccinated crossbred cattle in Ethiopia

    Get PDF
    Funder: The Defense Science and Technology LaboratoryFunder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100000265Funder: Economic and Social Research Council; Id: http://dx.doi.org/10.13039/501100000269Funder: Department for International Development, UK Government; Id: http://dx.doi.org/10.13039/501100000278Funder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268Bovine tuberculosis (bTB) challenges intensive dairy production in Ethiopia and implementation of the test and slaughter control strategy is not economically acceptable in the country. Vaccination of cattle with Bacillus Calmette-Guerin (BCG) could be an important adjunct to control, which would require a diagnostic test to differentiate Mycobacterium bovis (M. bovis)-infected and BCG-vaccinated animals (DIVA role). This study describes an evaluation of a DIVA skin test (DST) that is based on a cocktail (DSTc) or fusion (DSTf) of specific (ESAT-6, CFP-10 and Rv3615c) M. bovis proteins in Zebu-Holstein-Friesians crossbred cattle in Ethiopia. The study animals used were 74 calves (35 BCG vaccinated and 39 unvaccinated) aged less than 3 weeks at the start of experiment and 68 naturally infected 'TB reactor' cows. Six weeks after vaccination, the 74 calves were tested with the DSTc and the single intradermal cervical comparative tuberculin (SICCT) test. The TB reactor cows were tested with the DSTc and the SICCT test. Reactions to the DSTc were not observed in BCG-vaccinated and unvaccinated calves, while SICCT test reactions were detected in vaccinated calves. DSTc reactions were detected in 95.6% of the TB reactor cows and single intradermal tuberculin positive reactions were found in 98.2% (95% confidence interval, CI, 92.1-100%). The sensitivity of the DSTc was 95.6% (95% CI, 87.6-99.1%), and significantly (p < .001) higher than the sensitivity (75%, 95% CI, 63.0-84.7%) of the SICCT test at 4 mm cut-off. DSTf and DSTc reactions were correlated (r = 0.75; 95% CI = 0.53-0.88). In conclusion, the DSTc could differentiate M. bovis-infected from BCG-vaccinated cattle in Ethiopia. DST had higher sensitivity than the SICCT test. Hence, the DSTc could be used as a diagnostic tool for bTB if BCG vaccination is implemented for the control of bTB in Ethiopia and other countries

    Population Genomics of Mycobacterium tuberculosis in Ethiopia Contradicts the Virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa

    Get PDF
    Colonial medical reports claimed that tuberculosis (TB) was largely unknown in Africa prior to European contact, providing a "virgin soil" for spread of TB in highly susceptible populations previously unexposed to the disease [1, 2]. This is in direct contrast to recent phylogenetic models which support an African origin for TB [3-6]. To address this apparent contradiction, we performed a broad genomic sampling of Mycobacterium tuberculosis in Ethiopia. All members of the M. tuberculosis complex (MTBC) arose from clonal expansion of a single common ancestor [7] with a proposed origin in East Africa [3, 4, 8]. Consistent with this proposal, MTBC lineage 7 is almost exclusively found in that region [9-11]. Although a detailed medical history of Ethiopia supports the view that TB was rare until the 20(th) century [12], over the last century Ethiopia has become a high-burden TB country [13]. Our results provide further support for an African origin for TB, with some genotypes already present on the continent well before European contact. Phylogenetic analyses reveal a pattern of serial introductions of multiple genotypes into Ethiopia in association with human migration and trade. In place of a "virgin soil" fostering the spread of TB in a previously naive population, we propose that increased TB mortality in Africa was driven by the introduction of European strains of M. tuberculosis alongside expansion of selected indigenous strains having biological characteristics that carry a fitness benefit in the urbanized settings of post-colonial Africa

    The variable prevalence of bovine tuberculosis among dairy herds in Central Ethiopia provides opportunities for targeted intervention.

    Get PDF
    Bovine tuberculosis (bTB) is an important disease for dairy productivity, as well as having the potential for zoonotic transmission. Previous prevalence studies of bTB in the dairy sector in central Ethiopia have suggested high prevalence, however, they have been limited to relatively small scale surveys, raising concerns about their representativeness. Here we carried out a cross sectional one-stage cluster sampling survey taking the dairy herd as a cluster to estimate the prevalence of bTB in dairy farms in six areas of central Ethiopia. The survey, which to date is by far the largest in the area in terms of the number of dairy farms, study areas and risk factors explored, took place from March 2016 to May 2017. This study combined tuberculin skin testing and the collection of additional herd and animal level data by questionnaire to identify potential risk factors contributing to bTB transmission. We applied the single intradermal cervical comparative tuberculin (SICCT) test using >4mm cut-off for considering an individual animal as positive for bTB; at least one reactor animal was required for a herd to be considered bTB positive. Two hundred ninety-nine dairy herds in the six study areas were randomly selected, from which 5,675 cattle were tested. The overall prevalence of bTB after standardisation for herd-size in the population was 54.4% (95% CI 48.7-60%) at the herd level, and it was 24.5% (95% CI 23.3-25.8) at the individual animal level. A Generalized Linear Mixed Model (GLMM) with herd and area as random effect was used to explore risk factors association with bTB status. We found that herd size, age, bTB history at farm, and breed were significant risk factors for animals to be SICCT positive. Animals from large herds had 8.3 times the odds of being tuberculin reactor (OR: 8.3, p-value:0.008) as compared to animals from small herds. The effect of age was strongest for animals 8-10 years of age (the oldest category) having 8.9 times the odds of being tuberculin reactors (OR: 8.9, p-value:<0.001) compared to the youngest category. The other identified significant risk factors were bTB history at farm (OR: 5.2, p-value:0.003) and cattle breed (OR: 2.5, p-value: 0.032). Our study demonstrates a high prevalence of bTB in central Ethiopia but with a large variation in within-herd prevalence between herds, findings that lays an important foundation for the future development of control strategies

    Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection

    Get PDF
    Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extrapulmonary TB in Ethiopia.; Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis.; No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported "contact with other TB patient" more often than patients infected with Lineage 3 did (OR = 1.6, CI 95% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3.; The study suggests a complex role for multiple interacting factors in the epidemiology of extrapulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia

    Population structure and transmission of Mycobacterium bovis in Ethiopia

    Get PDF
    Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is Mycobacterium bovis , which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of M. bovis in Ethiopia. A total of 134 M . bovis isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of M. bovis , based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond

    Evaluation of the Efficacy of BCG in Protecting Against Contact Challenge With Bovine Tuberculosis in Holstein-Friesian and Zebu Crossbred Calves in Ethiopia

    Get PDF
    Bovine tuberculosis (bTB) is prevalent in intensive dairy farms in Ethiopia. Vaccination could be an alternative control approach given the socio-economic challenges of a test-and-slaughter control strategy. The efficacy of the BCG was evaluated on 40 Holstein-Friesian (HF) and zebu crossbred calves recruited from single intradermal cervical comparative tuberculin (SICCT) test negative herds and randomly allocated into two groups. Twenty-two calves were vaccinated within 2 weeks of age, and 18 were kept as a control. Six weeks post-vaccination, the two groups were exposed and kept mixed with known SICCT test positive cows for 1 year. Immune responses were monitored by interferon gamma (IFN-γ) release assay (IGRA), SICCT test, and antibody assay. Vaccinated calves developed strong responses to the SICCT test at the sixth week post-vaccination, but did not respond to ESAT-6/CFP-10 peptide antigen-based IGRA. During the exposure, IFN-γ response to the specific peptide cocktail [F(2.44, 92.67) = 26.96; p < 0.001] and skin reaction to the specific proteins cocktail [F(1.7, 64.3); p < 0.001] increased progressively in both groups while their antibody responses were low. The prevalence of bTB was 88.9% (95% CI: 65.3–98.6) and 63.6% (95% CI: 40.7–83.8) in the control and vaccinated calves, respectively, based on Mycobacterium bovis isolation, giving a direct protective efficacy estimate of 28.4% (95% CI: −2.7 to 50.1). The proportion of vaccinated calves with lesion was 7.0% (34/484) against 11.4% (45/396) in control calves, representing a 38% (95% CI: 5.8–59.4) reduction of lesion prevalence. Besides, the severity of pathology was significantly lower (Mann–Whitney U-test, p < 0.05) in vaccinated (median score = 2.0, IQR = 0–4.75) than in control (median score = 5, IQR = 3.0–6.25) calves. Moreover, survival from M. bovis infection in vaccinated calves was significantly (log-rank test: χ2 = 6.749, p < 0.01) higher than that of the control calves. In conclusion, the efficacy of BCG was low, but the reduced frequency and severity of lesion in vaccinated calves could suggest its potential role in containing onward transmission
    • …
    corecore