13 research outputs found

    Reversible Emission Tunability from 2D‐Layered Perovskites with Conjugated Organic Cations

    Get PDF
    The structural flexibility of 2D‐layered halide perovskites provides unprecedented opportunities for tuning their optical properties. For example, lattice distortions facilitate white emission that stems from self‐trapped excitons or defects, and organic cations and halides determine structural stability and emission range. Herein, the optical properties of a set of single‐layer thiophene‐based 2D lead bromide platelets are investigated. Blue‐ and white‐emitting materials based on the choice of thiophene cation and HBr concentration in the synthesis and reversible white to blue color switching by sequential washing and precursor exposure of the fabricated samples are obtained. The photophysical and structural studies indicate that the key to color switching is the formation and suppression of self‐trapped excitons by the supply and removal of cations and halides in acetone. The range of emission color from these materials is extended to red by efficient Mn doping that leads to an additional strong emission peak centered at 620 nm. The findings stimulate the development of color‐tunable and switchable light emitters based on a single material

    Temperature Driven Transformation of CsPbBr3_3 Nanoplatelets into Mosaic Nanotiles in Solution through Self-Assembly

    Full text link
    Two-dimensional colloidal halide perovskite nanocrystals are promising materials for light emitting applications. In addition, they can be used as components to create a variety of materials through physical and chemical transformations. Recent studies focused on nanoplatelets that are able to self-assemble and transform on solid substrates. Yet, the mechanism behind the process and the atomic arrangement of their assemblies remain unclear. Here, we present the transformation of self-assembled stacks of CsPbBr3_3 nanoplatelets in solution, capturing the different stages of the process by keeping the solutions at room temperature and monitoring the nanocrystal morphology over a period of a few months. Using ex-situ transmission electron microscopy and surface analysis, we demonstrate that the transformation mechanism can be understood as oriented attachment, proceeding through the following steps: i) desorption of the ligands from the particles surfaces, causing the merging of nanoplatelet stacks, which first form nanobelts; ii) merging of neighboring nanobelts that form more extended nanoplates; and iii) attachment of nanobelts and nanoplates, which create objects with an atomic structure that resemble a mosaic made of broken nanotiles. We reveal that the starting nanoplatelets merge seamlessly and defect-free on an atomic scale in small and thin nanobelts. However, aged nanobelts and nanoplates, which are mainly stabilized by amine/ammonium ions, link through a bilayer of CsBr. In this case, the atomic columns of neighboring perovskite lattices shift by a half-unit-cell, forming Ruddlesden-Popper planar faults.Comment: 28 pages, 5 Figure

    Core/Shell CdSe/CdS bone‐shaped nanocrystals with a thick and anisotropic shell as optical emitters

    Get PDF
    Colloidal core/shell nanocrystals are key materials for optoelectronics, enabling control over essential properties via precise engineering of the shape, thickness, and crystal structure of their shell. Here, the growth protocol for CdS branched nanocrystals is applied on CdSe nanoplatelet seeds and bone-shaped heterostructures are obtained with a highly anisotropic shell. Surprisingly, the nanoplatelets withstand the high growth temperature of 350 degrees C and structures with a CdSe nanoplatelet core that is overcoated by a shell of cubic CdS are obtained, on top of which tetrahedral CdS structures with hexagonal lattice are formed. These complex core/shell nanocrystals show a band-edge emission around 657 nm with a photoluminescence quantum yield of approximate to 42% in solution, which is also retained in thin films. Interestingly, the nanocrystals manifest simultaneous red and green emission and the relatively long wavelength of the green emission indicates charge recombination at the cubic/hexagonal interface of the CdS shell. The nanocrystal films show amplified spontaneous emission, random lasing, and distributed feedback lasing when the material is deposited on suitable gratings. This work stimulates the design and fabrication of more exotic core/shell heterostructures where charge carrier delocalization, dipole moment, and other optical and electrical properties can be engineered

    Real-Time In Situ Observation of CsPbBr3 Perovskite Nanoplatelets Transforming into Nanosheets

    Get PDF
    The manipulation of nano-objects through heating is an effective strategy for inducing structural modifications and therefore changing the optoelectronic properties of semiconducting materials. Despite its potential, the underlying mechanism of the structural transformations remains elusive, largely due to the challenges associated with their in situ observations. To address these issues, we synthesize temperature-sensitive CsPbBr3 perovskite nanoplatelets and investigate their structural evolution at the nanoscale using in situ heating transmission electron microscopy. We observe the morphological changes that start from the self-assembly of the nanoplatelets into ribbons on a substrate. We identify several paths of merging nanoplates within ribbons that ultimately lead to the formation of nanosheets dispersed randomly on the substrate. These observations are supported by molecular dynamics simulations. We correlate the various paths for merging to the random orientation of the initial ribbons along with the ligand mobility (especially from the edges of the nanoplatelets). This leads to the preferential growth of individual nanosheets and the merging of neighboring ones. These processes enable the creation of structures with tunable emission, ranging from blue to green, all from a single material. Our real-time observations of the transformation of perovskite 2D nanocrystals reveal a route to achieve large-area nanosheets by controlling the initial orientation of the self-assembled objects with potential for large-scale applications

    Developing Metal-Halide Layered Perovskite Nanomaterials for Optoelectronics

    No full text
    The abundant chemical tunability along with outstanding optoelectronic properties of the 2D metal-halide layered perovskite materials, as well as the potential prospect on understanding the structure-property relationships at the molecular level, provide enormous opportunity for the scientific community on designing new and efficient 2D metal-halide layered perovskites for a specific optoelectronic application. These materials still require attention on understanding their fundamental electronic properties and on controlling their synthesis parameters to produce high quality materials. Moreover, the synergy between the organic and inorganic compounds in these systems further opens up the possibility to unlock novel optoelectronic properties by simply integrating many other available functional organic molecules into these structures. This thesis is dedicated to the synthesis of 2D lead-bromide Ruddlesden Popper layered perovskite materials through a simple synthesis technique and by using different organic molecules. It targets a full investigation of the photo-physical properties of the as synthesized materials. Moreover, it presents detailed studies on the effect of structural rigidity and electron-phonon interaction provided by organic molecules on the emission efficiencies of 2D layered perovskites, and their emission tunability by using organic molecules with different architectures. In a more technological view, this thesis summarizes the work performed on the integration of 2D layered perovskites in polymer films and their emission enhancement by mechanical stress

    Correlating symmetries of low-frequency vibrations and self-trapped excitons in layered perovskites for light emission with different colors

    No full text
    The soft hybrid organic–inorganic structure of two-dimensional layered perovskites (2DLPs) enables broadband emission at room temperature from a single material, which makes 2DLPs promising sources for solid-state white lighting, yet with low efficiency. The underlying photophysics involves self-trapping of excitons favored by distortions of the inorganic lattice and coupling to phonons, where the mechanism is still under debate. 2DLPs with different organic moieties and emission ranging from self-trapped exciton (STE)-dominated white light to blue band-edge photoluminescence are investigated. Detailed insights into the directional symmetries of phonon modes are gained using angle-resolved polarized Raman spectroscopy and are correlated to the temperature-dependence of the STE emission. It is demonstrated that weak STE bands at low-temperature are linked to in-plane phonons, and efficient room-temperature STE emission to more complex coupling to several phonon modes with out-of-plane components. Thereby, a unique view is provided into the lattice deformations and recombination dynamics that are key to designing more efficient materials.The research leading to these results had received funding from the European Union under the Marie SkƂodowska-Curie RISE project COMPASS No. 691185, and from the AI-4-QD project financed by the Italian Ministry of Foreign affairs and International Cooperation (MAECI) within the bilateral Italy-Israel program. P.-H.T. and M.-L.L. acknowledge support from the National Natural Science Foundation of China (Grant Nos. 12004377 and 11874350), CAS Key Research Program of Frontier Sciences (Grant No. ZDBS-LY-SLH004), and China Postdoctoral Science Foundation (Grant No. 2019TQ0317).Peer reviewe
    corecore