5 research outputs found

    Hepatic and serum branched-chain fatty acid profile in patients with nonalcoholic fatty liver disease: A case–control study

    Get PDF
    Objective Alterations in the hepatic lipidome are a crucial factor involved in the pathophysiology of nonalcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the serum and hepatic profile of branched-chain fatty acids (BCFAs) in patients with different stages of NAFLD. Methods This was a case–control study performed in 27 patients without NAFLD, 49 patients with nonalcoholic fatty liver, and 17 patients with nonalcoholic steatohepatitis, defined by liver biopsies. Serum and hepatic levels of BCFAs were analyzed by gas chromatography–mass spectrometry. The hepatic expression of genes involved in the endogenous synthesis of BCFAs was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Results A significant increase in hepatic BCFAs was found in subjects with NAFLD compared with those without NAFLD; no differences were observed in serum BCFAs between study groups. Trimethyl BCFAs, iso-BCFAs, and anteiso-BCFAs were increased in subjects with NAFLD (either nonalcoholic fatty liver or nonalcoholic steatohepatitis) compared with those without NAFLD. Correlation analysis showed a relationship between hepatic BCFAs and the histopathological diagnosis of NAFLD, as well as other histological and biochemical parameters related to this disease. Gene expression analysis in liver showed that the mRNA levels of BCAT1, BCAT2, and BCKDHA were upregulated in patients with NAFLD. Conclusions These results suggest that the increased production of liver BCFAs might be related to NAFLD development and progression.This work was funded by the Institute of Health “Carlos III” (ISCIII) and cofunded by the Fondo Europeo de Desarrollo Regional-FEDER (grant number PI20/00505). J.C.F-G was supported by an intensification research program (INT21/00078, ISCIII, Spain; cofunded by the Fondo Europeo de Desarrollo Regional-FEDER), M.A.M-S was supported by a PFIS predoctoral fellowship from the ISCIII (FI21/00003, ISCIII, Spain; cofunded by the Fondo Europeo de Desarrollo Regional-FEDER), and B.R-M was supported by the “Miguel Servet Type I” program (CP19/00098, ISCIII, Spain; cofunded by the Fondo Europeo de Desarrollo Regional-FEDER). The funding organizations played no role in the design of the study, review and interpretation of the data, or final approval of the manuscript. Funding for open access charge: Universidad de Málaga / CBU

    Isochore chromosome maps of the human genome

    Get PDF
    The human genome is a mosaic of isochores, which are long DNA segments (z.Gt;300 kbp) relatively homogeneous in G+C. Human isochores were first identified by density-gradient ultracentrifugation of bulk DNA, and differ in important features, e.g. genes are found predominantly in the GC-richest isochores. Here, we use a reliable segmentation method to partition the longest contigs in the human genome draft sequence into long homogeneous genome regions (LHGRs), thereby revealing the isochore structure of the human genome. The advantages of the isochore maps presented here are: (1) sequence heterogeneities at different scales are shown in the same plot; (2) pair-wise compositional differences between adjacent regions are all statistically significant; (3) isochore boundaries are accurately defined to single base pair resolution; and (4) both gradual and abrupt isochore boundaries are simultaneously revealed. Taking advantage of the wide sample of genome sequence analyzed, we investigate the correspondence between LHGRs and true human isochores revealed through DNA centrifugation. LHGRs show many of the typical isochore features, mainly size distribution, G+C range, and proportions of the isochore classes. The relative density of genes, Alu and long interspersed nuclear element repeats and the different types of single nucleotide polymorphisms on LHGRs also coincide with expectations in true isochores. Potential applications of isochore maps range from the improvement of gene-finding algorithms to the prediction of linkage disequilibrium levels in association studies between marker genes and complex traits. The coordinates for the LHGRs identified in all the contigs longer than 2 Mb in the human genome sequence are available at the online resource on isochore mapping: http://bioinfo2.ugr.es/isochores.This work was supported by grant BIO99-0651-CO2-01 from the Spanish Government

    Gut Microbiome Modification through Dietary Intervention in Patients with Colorectal Cancer: Protocol for a Prospective, Interventional, Controlled, Randomized Clinical Trial in Patients with Scheduled Surgical Intervention for CRC.

    No full text
    Colorectal cancer (CRC) is the third most common cancer and the second cause of cancer death worldwide. Several factors have been postulated to be involved in CRC pathophysiology, including heritable and environmental factors, which are the latest to be closely associated with nutritional habits, physical activity, obesity, and the gut microbiota. The latter may also play a key role in CRC prognosis and derived complications in patients undergoing surgery. This is a single-center, open, controlled, randomized clinical trial, in patients with scheduled surgical intervention for CRC. The primary objective is to assess whether a pre-surgical nutritional intervention, based on a high-fiber diet rich in polyunsaturated fatty acids (PUFAs), can reduce disturbances of the gut microbiota composition and, consequently, the rate of post-surgical complications in patients with CRC. Patients will be randomized in a 1:1 ratio after receiving a diagnosis of CRC. In the control arm, patients will receive standard nutritional recommendations, while patients in the intervention arm will be advised to follow a high-fiber diet rich in PUFAs before surgery. Participants will be followed up for one year to evaluate the overall rate of postsurgical complications, recurrences of CRC, response to adjuvant therapy, and overall/disease-free survival
    corecore