13 research outputs found

    Neurotensin(8–13) analogs as dual NTS1 and NTS2 receptor ligands with enhanced effects on a mouse model of Parkinson's disease

    Get PDF
    : The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders

    Berberine, a popular dietary supplement for human and animal health: Quantitative research literature analysis a review

    Get PDF
    Berberine is an alkaloid with a wide range of reported beneficial health effects. The current work provides an extensive literature analysis on berberine. Bibliometric data were identified by means of the search string TOPIC=(berberin* OR umbellatine*), which yielded 5,547 publications indexed in the Web of Science Core Collection electronic database. The VOSviewer software generated bubble maps to visualize semantic terms with citation results. The ratio of original articles to reviews was 13.6:1. The literature has been growing more quickly since the 2010s. Major contributing countries were China, the United States, India, Japan, and South Korea. Most of the publications appeared in journals specialized in pharmacology pharmacy, biochemistry molecular biology, chemistry, and plant science. Some of the frequently mentioned chemicals/chemical classes were alkaloid, palmatine, jatrorrhizine, coptisine, isoquinoline, and sanguinarine. The prevalent medical conditions under investigation included Alzheimers disease, cancer, diabetes, and obesity.Acknowledge the support by the Polish KNOW (LeadingNational Research Centre) Scientific Consortium “Healthy Animal-Safe Food,” decision of Ministry of Science and Higher Education No. 05-1/KNOW2/2015 and the European Union under the European Regional Development Fund (Homing/2017-4/41). Antoni Sureda has been supported by the Institute of Health Carlos III (Project CIBEROBN CB12/03/30038). Joanna Feder-Kubis was financed by the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wrocław University of Science and Technology.info:eu-repo/semantics/publishedVersio

    THE EFFECTIVENESS OF GRAFTING TO IMPROVE SALTTOLERANCE OF SENSITIVE MELON WHEN THE TOLERANT MELON ISUSED AS ROOTSTOCK

    No full text
    Melon cultivars that are sensitive and tolerant to salinity were reciprocally grafted andplants were grown under salinity and control conditions in the glasshouse. Growing culturewas vermiculite and plants were irrigated by the complete nutrient solution. Thirty days oldmelon plants, grafted and ungrafted were subjected to salinity stress during 25 days with100mM NaCI. Some physiological parameters were investigated. Grafting on the tolerantmelon increased the responses of the sensitive melon to salinity in comparison to theungrafted one. The shoot fresh weight and leaf area were increased by 27%, leaf waterpotential was increased by 65%, leaf membrane injury index was decreased by 13 andstomatal conductance was increased by 18%. Other parameters like chlorophyll content, leaftemperature, mineral content (Na, K, Ca, and Cl) of the leaf and root, antioxidative enzymeactivities were also investigated. All results were discussed in the meeting in Portugal.</p

    The Effectiveness of Grafting to Improve Salt Tolerance of Sensitive Melon When the Tolerant Melon is Use as Rootstock

    Get PDF
    4th International Conference on Agriculture and Horticulture (AGRI) -- FEB 15-17, 2015 -- Amsterdam, NETHERLANDSWOS: 000380953000147Melon is one of the important species of the Cucurbitaceae family. However the salinity sensitivity of the melon is the significant limitation in melon production areas. Grafting can be an alternative solution for saline conditions however the rootstock affinity of melons with the other species of the Cucurbitaceae family, mainly different squashes, is still economically uncertain. Therefore may be the melon itself can be good rootstock for the melon scions. In this research, the melon rootstock for melon scion was studied for salinity tolerance. Melon cultivars that are sensitive and tolerant to salinity were reciprocally grafted and plants were grown under salt stress with control plants. Growing culture was vermiculite and plants were irrigated by the complete nutrient solution. Thirty days old melon plants, grafted and un-grafted were subjected to salinity stress during 25 days with 100mM NaCI. Some physiological parameters were investigated. Grafting on the tolerant melon increased the responses of the sensitive melon to salinity in comparison to the un-grafted one. The shoot fresh weight and leaf area both were increased by 27%, leaf water potential was increased by 65%. Leaf membrane injury was decreased by 13 and stomatal conductance was increased by 18%. Grafting technique and salt tolerant-melon-rootstock can be good solution for melon production under the saline conditions. (C) 2015 The Authors. Published by Elsevier B.V

    Carboxamides vs. methanimines: Crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors

    No full text
    A comprehensive study was performed for the first time to compare two structurally related substance classes, namely indazole-5-carboxamides (11–16) and (indazole-5-yl)methanimines (17–22). Both chemical entities are potent, selective and reversible MAO-B inhibitors and, therefore, may serve as promising lead structures for the development of drug candidates against Parkinson's disease (PD) and other neurological disorders. Compounds 15 (Ki = 170 pM, SI = 25907) and 17 (Ki = 270 pM, SI = 16340) were the most potent and selective MAO-B inhibitors in both series. To investigate the multi-target inhibitory activity, all compounds were further screened for their potency against human AChE and BuChE enzymes. Compound 15 was found to be the most potent and selective AChE inhibitor in all series (hAChE IC50 = 78.3 ± 1.7 μM). Moreover, compounds 11 and 17 showed no risk of drug-induced hepatotoxicity and a wider safety window, as determined in preliminary cytotoxicity screening. Molecular modeling studies into the human MAO-B enzyme-binding site supported by a HYDE analysis suggested that the imine linker similarly contributes to the total binding energy in methanimines 17–22 as the amide spacer in their carboxamide analogs 11–16. Amplified photophysical evaluation of compounds 17 and 20, including single X-ray analysis, photochemical experiments, and quantum-chemical calculations, provided insights into their more favourable isomeric forms and structural features, which contribute to their biologically active form and promising drug-like properties

    Neurotensins and their therapeutic potential: Research field study

    No full text
    The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied

    Carboxamides vs. methanimines: Crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors.

    No full text
    Tzvetkov NT, Stammler H-G, Georgieva MG, et al. Carboxamides vs. methanimines: Crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors. European journal of medicinal chemistry. 2019;179::404-422.A comprehensive study was performed for the first time to compare two structurally related substance classes, namely indazole-5-carboxamides (11-16) and (indazole-5-yl)methanimines (17-22). Both chemical entities are potent, selective and reversible MAO-B inhibitors and, therefore, may serve as promising lead structures for the development of drug candidates against Parkinson's disease (PD) and other neurological disorders. Compounds 15 (Ki = 170 pM, SI = 25907) and 17 (Ki = 270 pM, SI = 16340) were the most potent and selective MAO-B inhibitors in both series. To investigate the multi-target inhibitory activity, all compounds were further screened for their potency against human AChE and BuChE enzymes. Compound 15 was found to be the most potent and selective AChE inhibitor in all series (hAChE IC50 = 78.3 ± 1.7 muM). Moreover, compounds 11 and 17 showed no risk of drug-induced hepatotoxicity and a wider safety window, as determined in preliminary cytotoxicity screening. Molecular modeling studies into the human MAO-B enzyme-binding site supported by a HYDE analysis suggested that the imine linker similarly contributes to the total binding energy in methanimines 17-22 as the amide spacer in their carboxamide analogs 11-16. Amplified photophysical evaluation of compounds 17 and 20, including single X-ray analysis, photochemical experiments, and quantum-chemical calculations, provided insights into their more favourable isomeric forms and structural features, which contribute to their biologically active form and promising drug-like properties. Copyright © 2019 Elsevier Masson SAS. All rights reserved

    Favipiravir vs. Deferiprone: Tautomeric, photophysical, in vitro biological studies, and binding interactions with SARS-Cov-2-MPro/ACE2

    No full text
    Coronavirus disease 2019 (COVID-19) still remains the most disastrous infection continuously affecting millions of people worldwide. Herein, we performed a comparative study between the anti-influenza drug favipiravir (FAV) and the anti-thalassemia drug deferiprone (DFP) in order to examine their potential as basic scaffolds for the generation of most effective and structurally novel antivirals. To conduct the initial molecular modelling and virtual screening steps, our recently proposed single crystal X-ray diffraction (SCXRD)/HYdrogen DEssolvation (HYDE) technology platform has been used. This platform allows molecular design, interactive prioritization and virtual evaluation of newly designed molecules, simultaneously affecting two COVID-related targets, including angiotensin-converting enzyme 2 (ACE2) as a host-cellular receptor (host-based approach) and the main protease (Mpro) enzyme of the spike glycoprotein of SARS-Cov-2 (virus-based approach). Based on the molecular docking results, DFP has shown higher binding affinity (Ki HYDE values) over FAV towards both biological targets. The tautomeric, physicochemical, and biological properties of FAV and DFP have been studied both experimentally and theoretically using molecular spectroscopy (UV–VIS absorption), parallel artificial membrane permeability assay, and cell biology (PAMPA and MTT assay), as well as DFT quantum chemical calculations. According to the obtained results, the enol tautomers of both compounds are considerably more stable in different organic solvents. However, the keto tautomer of FAV was estimated to be most preferable under physiological conditions, which is in good agreement with the molecular docking studies. The isolated crystal structure of DFP is in an excellent agreement with the computation in respect of the most stable tautomer. Combined single X-ray/molecular modeling studies including HYDE analyses provided not only insights into the protein–ligand interactions within the binding site of SARS-Cov-2-ACE2 and SARS-Cov-2-Mpro, but also a valuable information regarding the most stable enol tautomeric form of DFP that contributes to its estimated higher potency against these targets

    Neurotensins and their therapeutic potential: research field study

    No full text
    The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied
    corecore