25 research outputs found

    The method of analytical regularization in the electromagnetic wave scattering by thin disks

    Get PDF
    We consider the problem of diffraction of an arbitrary electromagnetic wave by a thin disk made from different materials and located in free space. Here we imply a zero- thickness perfectly electrically conducting (PEC) disk, and also thin electrically resistive (ER) and dielectric disks whose thickness is much smaller than the disk radius and the free space wavelength, and also much smaller than the skin-layer depth in the ER disk case. The method used for the modeling is based on the integral equation (IE) technique and analytical regularization. Starting with Maxwell's equations, boundary conditions and the radiation condition at infinity we obtain a set of coupled dual IEs (DIEs) for the unknowns and then reduce this set of equations to the coupled IEs of the Fredholm second kind. To verify our results we calculate the far field characteristics in the case of the PEC disk with the incident field being the field of horizontal electrical dipole located on the disk axis

    Complex-source-point beam scattering by a thin high-contrast dielectric disk

    No full text
    International audienc

    Dual integral equations technique in electromagnetic wave scattering by a thin disk

    No full text
    International audienceThe scattering of an arbitrary electromagnetic wave by a thin disk located in free space is formulated rigorously in terms of coupled dual integral equations (CDIEs) for the unknown images of the jumps and average values of the normal to the disk scattered-field components. Considered are three cases of the disk: (1) zero-thickness perfectly electrically conducting (PEC) disk, (2) thin electrically resistive (ER) disk and (3) dielectric disk. Disk thickness is assumed much smaller than the disk radius and the free space wavelength, in ER and dielectric disk cases, and also much smaller than the skin-layer depth, in the ER disk case. The set of CDIEs are \decoupled" by introduction of the coupling constants. Each set of DIEs are reduced to a Fredholm second kind integral equation by using the semi-inversion of DIE integral operators. The set of \coupling" equations for finding the coupling constants is obtained additionally from the edge behavior condition. Thus, each problem is reduced to a set of coupled Fredholm second kind integral equations. It is shown that each set can be reduced to a block-type three-diagonal matrix equation, which can be effectively solved numerically by iterative inversions of the two diagonal blocks and 2 x 2 matrix

    Accurate quantification of the Purcell effect in the presence of a dielectric microdisk of nanoscale thickness

    No full text
    ISBN / 1750-0443International audienc

    Terahertz Range Elementary Dipole Excitation of a Thin Dielectric Disk Sandwiched between Two Graphene Covers Integral Equation Analysis

    No full text
    International audienceWe study, using the integral equation technique, the scattering of the field radiated by an elementary dipole, by a thin dielectric disk sandwiched between two conformal graphene covers, on the top and bottom faces. To build a mathematical model of such scatterer, we use the generalized boundary condition in the form first obtained by Mitzner and Bleszynski et al. and generalized by Karlsson. This enables us to derive dual integral equations in the disk plane for the Hankel transforms of the tangential electric and magnetic field components, and cast it to a set of two coupled Fredholm second-kind integral equations. The latter equations are discretized and solved numerically with the guaranteed convergence. We compute and plot the power radiated by an elementary magnetic dipole placed above such a composite disk, in the THz range. This reveals that the studied scatterer is a complicated open resonator supporting the low-frequency plasmon modes and the high-frequency dielectric-disk modes. © 2019 IEEE
    corecore