3,428 research outputs found

    A new diagrammatic representation for correlation functions in the in-in formalism

    Get PDF
    In this paper we provide an alternative method to compute correlation functions in the in-in formalism, with a modified set of Feynman rules to compute loop corrections. The diagrammatic expansion is based on an iterative solution of the equation of motion for the quantum operators with only retarded propagators, which makes each diagram intrinsically local (whereas in the standard case locality is the result of several cancellations) and endowed with a straightforward physical interpretation. While the final result is strictly equivalent, as a bonus the formulation presented here also contains less graphs than other diagrammatic approaches to in-in correlation functions. Our method is particularly suitable for applications to cosmology.Comment: 14 pages, matches the published version. includes a modified version of axodraw.sty that works with the Revtex4 clas

    On time-dependent AdS/CFT

    Full text link
    We clarify aspects of the holographic AdS/CFT correspondence that are typical of Lorentzian signature, to lay the foundation for a treatment of time-dependent gravity and conformal field theory phenomena. We provide a derivation of bulk-to-boundary propagators associated to advanced, retarded and Feynman bulk propagators, and provide a better understanding of the boundary conditions satisfied by the bulk fields at the horizon. We interpret the subleading behavior of the wavefunctions in terms of specific vacuum expectation values, and compute two-point functions in our framework. We connect our bulk methods to the closed time path formalism in the boundary field theory.Comment: 19 pages, v2: added reference, JHEP versio

    Renormalization of initial conditions and the trans-Planckian problem of inflation

    Get PDF
    Understanding how a field theory propagates the information contained in a given initial state is essential for quantifying the sensitivity of the cosmic microwave background to physics above the Hubble scale during inflation. Here we examine the renormalization of a scalar theory with nontrivial initial conditions in the simpler setting of flat space. The renormalization of the bulk theory proceeds exactly as for the standard vacuum state. However, the short distance features of the initial conditions can introduce new divergences which are confined to the surface on which the initial conditions are imposed. We show how the addition of boundary counterterms removes these divergences and induces a renormalization group flow in the space of initial conditions.Comment: 22 pages, 4 eps figures, uses RevTe

    Neutrino collective excitations in the Standard Model at high temperature

    Full text link
    Neutrino collective excitations are studied in the Standard Model at high temperatures below the symmetry breaking scale. Two parameters determine the properties of the collective excitations: a mass scale mν=gT/4m_\nu=gT/4 which determines the \emph{chirally symmetric} gaps in the spectrum and Δ=MW2(T)/2mνT\Delta=M^2_W(T)/2m_\nu T. The spectrum consists of left handed negative helicity quasiparticles, left handed positive helicity quasiholes and their respective antiparticles. For Δ<Δc=1.275...\Delta < \Delta_c = 1.275... there are two gapped quasiparticle branches and one gapless and two gapped quasihole branches, all but the higher gapped quasiparticle branches terminate at end points. For Δc<Δ<π/2\Delta_c < \Delta < \pi/2 the quasiparticle spectrum features a pitchfork bifurcation and for Δ>π/2\Delta >\pi/2 the collective modes are gapless quasiparticles with dispersion relation below the light cone for kmνk\ll m_\nu approaching the free field limit for kmνk\gg m_\nu with a rapid crossover between the soft non-perturbative to the hard perturbative regimes for kmνk\sim m_\nu.The \emph{decay} of the vector bosons leads to a \emph{width} of the collective excitations of order g2g^2 which is explicitly obtained in the limits k=0k =0 and kmνΔk\gg m_\nu \Delta. At high temperature this damping rate is shown to be competitive with or larger than the collisional damping rate of order GF2G^2_F for a wide range of neutrino energy.Comment: 32 pages 16 figs. Discussion on screening corrections. Results unchanged to appear in Phys. Rev.

    Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes

    Full text link
    The noise kernel is the vacuum expectation value of the (operator-valued) stress-energy bi-tensor which describes the fluctuations of a quantum field in curved spacetimes. It plays the role in stochastic semiclassical gravity based on the Einstein-Langevin equation similar to the expectation value of the stress-energy tensor in semiclassical gravity based on the semiclassical Einstein equation. According to the stochastic gravity program, this two point function (and by extension the higher order correlations in a hierarchy) of the stress energy tensor possesses precious statistical mechanical information of quantum fields in curved spacetime and, by the self-consistency required of Einstein's equation, provides a probe into the coherence properties of the gravity sector (as measured by the higher order correlation functions of gravitons) and the quantum nature of spacetime. It reflects the low and medium energy (referring to Planck energy as high energy) behavior of any viable theory of quantum gravity, including string theory. It is also useful for calculating quantum fluctuations of fields in modern theories of structure formation and for backreaction problems in cosmological and black holes spacetimes. We discuss the properties of this bi-tensor with the method of point-separation, and derive a regularized expression of the noise-kernel for a scalar field in general curved spacetimes. One collorary of our finding is that for a massless conformal field the trace of the noise kernel identically vanishes. We outline how the general framework and results derived here can be used for the calculation of noise kernels for Robertson-Walker and Schwarzschild spacetimes.Comment: 22 Pages, RevTeX; version accepted for publication in PR

    Hydrodynamic transport functions from quantum kinetic theory

    Get PDF
    Starting from the quantum kinetic field theory [E. Calzetta and B. L. Hu, Phys. Rev. D37, 2878 (1988)] constructed from the closed-time-path (CTP), two-particle-irreducible (2PI) effective action we show how to compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic regime. For a real scalar field with λΦ4\lambda \Phi ^{4} self-interaction we need to include 4 loop graphs in the equation of motion. This work provides a microscopic field-theoretical basis to the ``effective kinetic theory'' proposed by Jeon and Yaffe [S. Jeon and L. G. Yaffe, Phys. Rev. D53, 5799 (1996)], while our result for the bulk viscosity reproduces their expression derived from linear response theory and the imaginary-time formalism of thermal field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using fundamental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic theory approach, as the success of the latter requires clever rendition of diagrammatic resummations which is neither straightforward nor failsafe. Moreover, the method based on the CTP-2PI effective action illustrated here for a scalar field can be formulated entirely in terms of functional integral quantization, which makes it an appealing method for a first-principles calculation of transport functions of a thermal non-abelian gauge theory, e.g., QCD quark-gluon plasma produced from heavy ion collisions.Comment: 25 pages revtex, 11 postscript figures. Final version accepted for publicatio

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter σ\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps

    Analytic and Numerical Study of Preheating Dynamics

    Full text link
    We analyze the phenomenon of preheating,i.e. explosive particle production due to parametric amplification of quantum fluctuations in the unbroken case, or spinodal instabilities in the broken phase, using the Minkowski space O(N)O(N) vector model in the large NN limit to study the non-perturbative issues involved. We give analytic results for weak couplings and times short compared to the time at which the fluctuations become of the same order as the tree level,as well as numerical results including the full backreaction.In the case where the symmetry is unbroken, the analytic results agree spectacularly well with the numerical ones in their common domain of validity. In the broken symmetry case, slow roll initial conditions from the unstable minimum at the origin, give rise to a new and unexpected phenomenon: the dynamical relaxation of the vacuum energy.That is, particles are abundantly produced at the expense of the quantum vacuum energy while the zero mode comes back to almost its initial value.In both cases we obtain analytically and numerically the equation of state which turns to be written in terms of an effective polytropic index that interpolates between vacuum and radiation-like domination. We find that simplified analysis based on harmonic behavior of the zero mode, giving rise to a Mathieu equation forthe non-zero modes miss important physics. Furthermore, analysis that do not include the full backreaction do not conserve energy, resulting in unbound particle production. Our results do not support the recent claim of symmetry restoration by non-equilibrium fluctuations.Finally estimates of the reheating temperature are given,as well as a discussion of the inconsistency of a kinetic approach to thermalization when a non-perturbatively large number of particles is created.Comment: Latex file, 52 pages and 24 figures in .ps files. Minor changes. To appear in Physical Review D, 15 December 199

    The Boltzmann equation for colourless plasmons in hot QCD plasma. Semiclassical approximation

    Full text link
    Within the framework of the semiclassical approximation, we derive the Boltzmann equation describing the dynamics of colorless plasmons in a hot QCD plasma. The probability of the plasmon-plasmon scattering at the leading order in the coupling constant is obtained. This probability is gauge-independent at least in the class of the covariant and temporal gauges. It is noted that the structure of the scattering kernel possesses important qualitative difference from the corresponding one in the Abelian plasma, in spite of the fact that we focused our study on the colorless soft excitations. It is shown that four-plasmon decay is suppressed by the power of gg relative to the process of nonlinear scattering of plasmons by thermal particles at the soft momentum scale. It is stated that the former process becomes important in going to the ultrasoft region of the momentum scale.Comment: 41, LaTeX, minor changes, identical to published versio

    Stochastic semiclassical cosmological models

    Get PDF
    We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless non-conformal matter fields in the Early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological modelintroduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.Comment: 29 pages, no figures, ReVTeX fil
    corecore