277 research outputs found

    Re-Thinking "Emotionally": Central of Business District (CBD) of Alexandria City as a Retailing Center

    Get PDF
    The decisions of the Alexandria Local Authorities would be a key motive power of the flourishing process in Alexandria City Center as a retailing center. The objective of this study is to pay more attention toward re-thinking "Emotionally" to identify any planning policies at various levels. This new tendency would be helpful for having a prosperous city center, after losing its significance as a retailing center. This degradation due to the presence of "Malls and Plazas" like 'City Center Mall," "Green Plaza," and "Down Town Plaza" lying on the peripheral of the city as well as many other reasons. Studying the Saad Zaghloul Street is part of this paper to prove that re-thinking "Emotionally" is the answer to the enhancement Alexandria City Center as a retailing center

    Universal computation by multi-particle quantum walk

    Full text link
    A quantum walk is a time-homogeneous quantum-mechanical process on a graph defined by analogy to classical random walk. The quantum walker is a particle that moves from a given vertex to adjacent vertices in quantum superposition. Here we consider a generalization of quantum walk to systems with more than one walker. A continuous-time multi-particle quantum walk is generated by a time-independent Hamiltonian with a term corresponding to a single-particle quantum walk for each particle, along with an interaction term. Multi-particle quantum walk includes a broad class of interacting many-body systems such as the Bose-Hubbard model and systems of fermions or distinguishable particles with nearest-neighbor interactions. We show that multi-particle quantum walk is capable of universal quantum computation. Since it is also possible to efficiently simulate a multi-particle quantum walk of the type we consider using a universal quantum computer, this model exactly captures the power of quantum computation. In principle our construction could be used as an architecture for building a scalable quantum computer with no need for time-dependent control

    Data of chemical analysis and electrical properties of SnO2-TiO2 composite nanofibers

    Get PDF
    In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO2-TiO2) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article “Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2-TiO2 composite nanowire for dye-sensitized solar cells

    Cryogenic Ion Trapping Systems with Surface-Electrode Traps

    Full text link
    We present two simple cryogenic RF ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 hours. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with 88^{88}Sr+^+ ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 minutes.Comment: 10 pages, 13 EPS figure

    Topological superfluid of spinless Fermi gases in p-band honeycomb optical lattices with on-site rotation

    Full text link
    In this paper, we put forward to another route realizing topological superfluid (TS). In contrast to conventional method, spin-orbit coupling and external magnetic field are not requisite. Introducing an experimentally feasible technique called on-site rotation (OSR) into p-band honeycomb optical lattices for spinless Fermi gases and considering CDW and pairing on the same footing, we investigate the effects of OSR on superfluidity. The results suggest that when OSR is beyond a critical value, where CDW vanishes, the system transits from a normal superfluid (NS) with zero TKNN number to TS labeled by a non-zero TKNN number. In addition, phase transitions between different TS are also possible

    Directly imaging spin polarons in a kinetically frustrated Hubbard system

    Full text link
    The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions. However, in kinetically frustrated lattices, itinerant spin polarons - bound states of a dopant and a spin-flip - have been theoretically predicted even in the absence of superexchange coupling. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular lattice Hubbard system realised with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems. Furthermore, our work provides microscopic insights into related phenomena in triangular lattice moir\'{e} materials.Comment: 7 pages (4 figures) + 6 pages methods (7 figures

    Probing site-resolved correlations in a spin system of ultracold molecules

    Full text link
    Synthetic quantum systems with interacting constituents play an important role in quantum information processing and in elucidating fundamental phenomena in many-body physics. Following impressive advances in cooling and trapping techniques, ensembles of ultracold polar molecules have emerged as a promising synthetic system that combines several advantageous properties. These include a large set of internal states for encoding quantum information, long nuclear and rotational coherence times and long-range, anisotropic interactions. The latter are expected to allow the exploration of intriguing phases of correlated quantum matter, such as topological superfluids, quantum spin liquids, fractional Chern insulators and quantum magnets. Probing correlations in these phases is crucial to understand their microscopic properties, necessitating the development of new experimental techniques. Here we use quantum gas microscopy to measure the site-resolved dynamics of quantum correlations in a gas of polar molecules in a two-dimensional optical lattice. Using two rotational states of the molecules, we realize a spin-1/2 system where the particles are coupled via dipolar interactions, producing a quantum spin-exchange model. Starting with the synthetic spin system prepared far from equilibrium, we study the evolution of correlations during the thermalization process for both spatially isotropic and anisotropic interactions. Furthermore, we study the correlation dynamics in a spin-anisotropic Heisenberg model engineered from the native spin-exchange model using Floquet techniques. These experiments push the frontier of probing and controlling interacting systems of ultracold molecules, with prospects for exploring new regimes of quantum matter and characterizing entangled states useful for quantum computation and metrology

    A two-dimensional programmable tweezer array of fermions

    Full text link
    We prepare high-filling two-component arrays of up to fifty fermionic atoms in optical tweezers, with the atoms in the ground motional state of each tweezer. Using a stroboscopic technique, we configure the arrays in various two-dimensional geometries with negligible Floquet heating. Full spin- and density-resolved readout of individual sites allows us to post-select near-zero entropy initial states for fermionic quantum simulation. We prepare a correlated state in a two-by-two tunnel-coupled Hubbard plaquette, demonstrating all the building blocks for realizing a programmable fermionic quantum simulator

    Impurity and spin effects on the magneto-spectroscopy of a THz-modulated nanostructure

    Full text link
    We present a grid-free DFT model appropriate to explore the time evolution of electronic states in a semiconductor nanostructure. The model can be used to investigate both the linear and the nonlinear response of the system to an external short-time perturbation in the THz regime. We use the model to study the effects of impurities on the magneto-spectroscopy of a two-dimensional electron gas in a nanostructure excited by an intense THz radiation. We do observe a reduction in the binding energy of the impurity with increasing excitation strength, and at a finite magnetic field we find a slow onset of collective spin-oscillations that can be made to vanish with a stronger excitation.Comment: LaTeX,10 pages with 11 embedded postscript figure
    corecore