258 research outputs found

    Evidence of Plasmonic Induced Photocatalytic Hydrogen Production on Pd/TiO2 Upon Deposition on Thin Films of Gold

    Get PDF
    H2-production from renewables using sunlight is probably the holy grail of modern science and technology. Among the many approaches for increasing reaction rates, by increasing light absorption, plasmonic materials are often invoked. Yet, most plasmonic metals on semiconductors are also good for Schottky barrier formation. In this work, we are presenting evidences of de-coupling the plasmonic from Schottky effects on photoreaction. To conduct this we have systematically changed the under-layer gold film thickness and associated particle size. On top of the thin film layer, we have deposited the exact amount of a prototypical Schottky-based photo-catalyst (Pd/TiO2). We found up to 4 times increase in the H2-production rate at a critical Au film thickness (8 nm-thick). Below this thickness, the plasmonic response is not too strong while above it, the PR decays in favor of the Drude absorption mode. The reaction requires the presence of both UV (to excite the semiconductor) and visible light (to excite Au particles) in order to obtain high hydrogen production, 800 µmol/gCatal.min (probably the highest direct hydrogen (not current) production rate reported on a performing catalyst). The enhancement origin is quantitatively traced to its computed electric field strength (EFS). Adding a dielectric (SiO2) in between the Au thin layer and the catalyst exponentially decreased the reaction rate and EFS, with increasing its thickness. This work indicates the possibility of making an active and stable photo-catalyst from fundamental concepts yet further progress on the structural (technological) front is needed to make a practical catalyst

    Bioefficacy of Plant Extracts to Control Cercospora Leaf Spot of Mungbean (Vigna radiata)

    Get PDF
    The experiment was conducted at Bangladesh Agricultural Research Institute farm, Joydebpur, Gazipur during March to July 2007 to evaluate the bioefficacy of some plant extracts in controlling Cercospora leaf spot of mungbean. Six indigenous plant species i.e. Neem leaves extract (1:4 w/v), Garlic cloves extract (1:5 w/v), Biskatali leaves extract (1:4 w/v), Alamanda leaves extract (1:6 w/v), Arjun leaves extract (1:4 w/v) and Debdaru leaves extract (1:5 w/v) were used in this experiment. The experiment was laid out in RCBD with seven treatments and four replications. Data on disease incidence, severity, yield contributing characters and yield of mungbean were recorded. Naturally, infection of the disease was considered in this experiment. The lowest disease incidence (7.33%) at 60 DAS was found in T1. Lowest and similar disease severity (PDI= 4.55) was found in T2 and T3 at the same DAS. Neem extract treated plots gave better response in yield (1.26 t ha-1) and all the yield contributing parameters like inflorescences plant-1 (13.45), tallest plant (51.44 cm), the maximum number of pods plant-1 (26.81), length of pod (8.56 cm), number of seeds pod-1 (12.64) and 1000 seeds weight (27.33 g) followed by T2 and T3. The highest disease incidence (26.50%) and disease index (13.65%) were recorded in treatment T7 at 60 DAS. Yield and all yield contributing factors were lowest in same treatment. The results of the experiment suggested that the use of neem leaves extracts are effective for minimizing Cercospora leaf spot incidence, severity and increasing yield of mungbean. Int. J. Agril. Res. Innov. & Tech. 3 (1): 60-65, June, 2013 DOI: http://dx.doi.org/10.3329/ijarit.v3i1.1609

    Probing the Superfluid to Mott Insulator Transition at the Single Atom Level

    Get PDF
    Quantum gases in optical lattices offer an opportunity to experimentally realize and explore condensed matter models in a clean, tunable system. We investigate the Bose-Hubbard model on a microscopic level using single atom-single lattice site imaging; our technique enables space- and time-resolved characterization of the number statistics across the superfluid-Mott insulator quantum phase transition. Site-resolved probing of fluctuations provides us with a sensitive local thermometer, allows us to identify microscopic heterostructures of low entropy Mott domains, and enables us to measure local quantum dynamics, revealing surprisingly fast transition timescales. Our results may serve as a benchmark for theoretical studies of quantum dynamics, and may guide the engineering of low entropy phases in a lattice

    Hyperechogenic renal parenchyma in potential live related kidney donors: Does it justify exclusion?

    Get PDF
    The aim of this work is to asses theimportance of ultrasonic grade I echogenicity inpotential kidney donors in the absence of urinaryabnormality and with perfect renal function.Thirty four living related kidney donors with thisabnormality were included, age range between 23-48years. Ten matched healthy donors were studied ascontrols.All cases were thoroughly investigated includingmeasuring GFR by isotopic scan and estimation ofrenal reserve by dopamine and aminoacid infusion.Renal biopsy was done for 17 cases of theechogenicity group and 8 controls. Our resultsshowed that the renal reserve was comparable in bothgroups. Glomerular changes were found in 41% ofapparently normal donors and only one case ofcontrols.Conclusion: Grade I echogenicity may be sign ofunrecognised kidney disease. Renal biopsy ismandatory when such related donors are the onlyavailable

    Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice

    Get PDF
    Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications from high temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers due to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we employ a degenerate Bose gas confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary an applied field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase the interaction between the spins is overwhelmed by the applied field which aligns the spins. In the antiferromagnetic phase the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in-situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, improving our understanding of real magnetic materials.Comment: 12 pages, 9 figure

    Topological Schr\"odinger cats: Non-local quantum superpositions of topological defects

    Full text link
    Topological defects (such as monopoles, vortex lines, or domain walls) mark locations where disparate choices of a broken symmetry vacuum elsewhere in the system lead to irreconcilable differences. They are energetically costly (the energy density in their core reaches that of the prior symmetric vacuum) but topologically stable (the whole manifold would have to be rearranged to get rid of the defect). We show how, in a paradigmatic model of a quantum phase transition, a topological defect can be put in a non-local superposition, so that - in a region large compared to the size of its core - the order parameter of the system is "undecided" by being in a quantum superposition of conflicting choices of the broken symmetry. We demonstrate how to exhibit such a "Schr\"odinger kink" by devising a version of a double-slit experiment suitable for topological defects. Coherence detectable in such experiments will be suppressed as a consequence of interaction with the environment. We analyze environment-induced decoherence and discuss its role in symmetry breaking.Comment: 7 pages, 4 figure

    Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems

    Full text link
    Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest, which are unfeasible for classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. Particularly, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analog quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles . Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pair-wise quantum correlations to observe the monogamy of entanglement

    Microscopic observation of magnon bound states and their dynamics

    Get PDF
    More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure

    Orbital excitation blockade and algorithmic cooling in quantum gases

    Get PDF
    Interaction blockade occurs when strong interactions in a confined few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow the detection and manipulation of the constituent particles, whether they are electrons, spins, atoms, or photons. The diverse applications range from single-electron transistors based on electronic Coulomb blockade to quantum logic gates in Rydberg atoms. We have observed a new kind of interaction blockade in transferring ultracold atoms between orbitals in an optical lattice. In this system, atoms on the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth and observe a staircase-type excitation behavior as we cross the interaction-split resonances by tuning the modulation frequency. As an application of orbital excitation blockade (OEB), we demonstrate a novel algorithmic route for cooling quantum gases. Our realization of algorithmic cooling utilizes a sequence of reversible OEB-based quantum operations that isolate the entropy in one part of the system, followed by an irreversible step that removes the entropy from the gas. This work opens the door to cooling quantum gases down to ultralow entropies, with implications for developing a microscopic understanding of strongly correlated electron systems that can be simulated in optical lattices. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a roadmap for the implementation of two-qubit gates in a quantum computing architecture with natural scalability.Comment: 6 pages, 4 figure
    corecore