261 research outputs found
Microstructure formation in electrodeposited Co-Cu/Cu multilayers with GMR effect: influence of current density during the magnetic layer deposition
The influence of the current density applied during the deposition of the magnetic layers on the microstructure formation in electrodeposited Co-Cu/Cu multilayers and on their giant magnetoresistance (GMR) was investigated using a combination of magnetoresistance measurements, wide-angle and small-angle X-ray scattering, high-resolution transmission electron microscopy, atomic force microscopy and chemical analysis. The magnetoresistance measurements revealed that a reduction of the current density stimulates a transition from the formation of the magnetic layers with predominantly ferromagnetic character to the formation of superparamagnetic regions. As based on electrochemical considerations, it was supposed that such a change in the magnetic properties can be caused by an increased amount of Cu codeposited with Co at low current densities. It turned out from the structural studies that a pronounced segregation of Co and Cu occurs at low current densities. In accordance with their very low mutual solubility at room temperature, no atomic scale intermixing of Co and Cu could be detected. The segregation of Cu and Co was related to the fragmentation of the magnetic layers, to the enhancement of the local lattice strains, to the increase of the interface corrugations, to the partial loss of the multilayer periodicity and finally to the formation of Co precipitates in the Cu matrix
Family -- Dicistroviridae
This chapter focuses on Dicistroviridae family whose two member genera are Cripavirus and Aparavirus. The virions are roughly spherical with a particle diameter of approximately 30 nm and have no envelope. The virions exhibit icosahedral, pseudo T = 3 symmetry and are composed of 60 protomers, each composed of a single molecule of each of VP2, VP3, and VP1. A smaller protein VP4 is also present in the virions of some members and is located on the internal surface of the 5-fold axis below VP1. The virions are stable in acidic conditions and have sedimentation coefficients of between 153 and 167S. They contain a single molecule of infectious, linear, positive sense, single stranded RNA (ssRNA) of approximately 8500–10,000 nt in size with a GC content ranging from 35 to 45%. RNA constitutes about 30% of the virion weight and the proteins account for 70% of the virion weight. The approximately 200 kDa nonstructural polyprotein and 100 kDa structural polyprotein are encoded by ORF 1 and ORF 2, respectively. The virions contain three major structural (capsid) viral proteins, VP1, VP2, and VP3 and the size of these capsid proteins ranges from 24 to 40 kDa. The RNA genome is monopartite and dicistronic with two nonoverlapping ORFs that are separated and flanked by UTRs. All members of the family infect invertebrates and most members of the family are widely distributed in nature. Dicistrovirus infection is not usually associated with overt disease, although infection commonly leads to reduced life expectancy
Creep behaviour of injection-moulded basalt fibre reinforced poly(lactic acid) composites
In this paper, the creep of short (chopped) basalt fibre reinforced poly(lactic acid) composites was investigated; 5, 10, 20 and 30 wt.% short basalt fibre reinforced composites were prepared by using twin-screw extrusion followed by injection moulding. Differential scanning calorimetry measurements revealed that the basalt fibres had nucleating effect on the poly(lactic acid)grade used in this study, while scanning electron microscopy demonstrated that there was strong adhesion between the fibre and the matrix. Fibre distribution analysis showed that there was no significant statistical difference between the average fibre lengths of all of the produced composites. Finally, creep mastercurves were constructed using the single creep curves obtained by applying 10, 20, 30,…, 90% of the tensile strength of the composites as a static creep loading force. It was demonstrated that the basalt fibres as reinforcements can effectively reduce the strain and increase time to failure of the composites during creep load and thus could open the possibilities for poly(lactic acid)-based composites to be used in long-term constantly loaded structural or engineering applications. </jats:p
Phytophthora × pelgrandis Causes Root and Collar Rot of Lavandula stoechas in Italy.
In 2007, Phytophthora isolates with atypical morphological and biological characteristics were found associated with root and collar rot of potted plants of Stoechas lavender (Lavandula stoechas) in an ornamental nursery in Italy. A polyphasic approach, including morphological and cultural observations, sequencing the ITS-rDNA region, the Pheca and the mitochondrial coxI genes, multiplex PCRs with primers specific for P. nicotianae or P. cactorum, as well as random amplified polymorphic DNA–polymerase chain reaction, was used to characterize these isolates. On the basis of morpho-cultural and molecular analyses, the isolates from Stoechas lavender were identified as Phytophthora × pelgrandis, a natural hybrid of P. nicotianae × P. cactorum previously reported in other European countries, the Americas, and Taiwan, as a pathogen of ornamentals and loquat plants. In pathogenicity tests using potted plants of Stoechas lavender, the P. × pelgrandis isolates, similarly to the parental species P. nicotianae, induced the symptoms observed on plants with natural infections and were reisolated only from artificially inoculated plants. Dispersal of P. × pelgrandis on this host could exacerbate the damage caused by Phytophthora root and collar rot, of which the main causal agent presently is P. nicotianae on lavender in Europe. Application of hygienic measures is important to reduce the proliferation and spread of the Phytophthora hybrids
Flavivirus-induced antibody cross-reactivity
Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae
Evidence of Simultaneous Circulation of West Nile and Usutu Viruses in Mosquitoes Sampled in Emilia-Romagna Region (Italy) in 2009
BACKGROUND: In recent years human diseases due to mosquito-borne viruses were increasingly reported in Emilia-Romagna region (Italy), from the chikungunya virus in 2007 to the West Nile virus (WNV) in 2008. An extensive entomological survey was performed in 2009 to establish the presence and distribution of mosquito arboviruses in this region, with particular reference to flaviviruses. METHODOLOGY/PRINCIPAL FINDINGS: From May 6 to October 31, a total of 190,516 mosquitoes were sampled in georeferenced stations, grouped in 1,789 pools according date of collection, location, and species, and analyzed by reverse transcription polymerase chain reaction (RT-PCR) to detect the presence of RNA belong to Flavivirus genus. WNV was detected in 27 mosquito pools, producing sequences similar to those of birds and human strains obtained in 2008 outbreak, pointed out the probable virus overwintering. Isolation of WNV was achieved from one of these pools. Moreover 56 pools of mosquitoes tested positive for Usutu virus (USUV). Most PCR positive pools consisted of Culex pipiens, which also was the most analyzed mosquito species (81.4% of specimens); interestingly, USUV RNA was also found in two Aedes albopictus mosquito pools. Simultaneous circulation of WNV and USUV in the survey area was highlighted by occurrence of 8 mosquito WNV- and USUV-positive pools and by the overlaying of the viruses "hot spots", obtained by kernel density estimation (KDE) analysis. Land use of sampled stations pointed out a higher proportion of WNV-positive Cx. pipiens pool in rural environments respect the provenience of total sampled pool, while the USUV-positive pools were uniformly captured in the different environments. CONCLUSIONS/SIGNIFICANCE: Obtained data highlighting the possible role of Cx. pipiens mosquito as the main vector for WNV and USUV in Northern Italy, and the possible involvement of Ae. albopictus mosquito in USUV cycle. The described mosquito-based surveillance could constitute the foundation for a public health alert system targeting mosquito borne arboviruses
Phylogeography of Japanese encephalitis virus:genotype is associated with climate
The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate
- …