48 research outputs found

    Modification of ultra low-k dielectric films by Oâ‚‚ and COâ‚‚ plasmas

    Get PDF
    Low-k materials developed for ULSI interconnects should have sufficient resistance to processing plasma. CO2 plasma is being considered as a promising candidate for low damage photoresist ash and as a surface activation chemistry for self-assembled monolayers and atomic layer deposition on low-k materials. This article explores the interaction of two organosilicate (OSG) based low-k materials with different k-values (OSG2.4 and OSG2.2) with CO2 plasma in both CCP and ICP-remote plasma chambers. Time dependent exposure of the materials to CO2 plasma revealed quick and effective sealing of OSG2.4 surface whereas it takes longer time for OSG2.2. The sealing reduces further plasma damage and leads to accumulation of CO2 in the pores of both materials. The same behavior occurs in ICP-remote plasma but without a complete sealing of the surface. This suggests the important role of ion bombardment. Damage to low-k by conventional O-2 plasma was studied alongside and it was found that for t 60 s. Furthermore, lesser time exposure to CO2 plasma was investigated with respect to source power at constant pressure and it was discovered that damage although small, increases with varying source power

    Superconductivity in a disordered metal with Coulomb interactions

    Full text link
    We study the electronic densities of states (DOS) of strongly disordered superconducting thin films of TiN. We find, using Scanning Tunneling Microscopy (STM) that the DOS decreases towards the Fermi level in the normal phase obtained by applying magnetic fields. The DOS shows spatial fluctuations whose length scale is related to the energy dependent DOS and is similar in normal and superconducting phases. This suggests that Coulomb interactions lead to a spatially varying DOS in the normal phase of a disordered superconductor

    Dual threshold diode based on the superconductor-to-insulator transition in ultrathin TiN filmss

    Get PDF
    We investigate transport properties of superconducting TiN films in the vicinity of the superconductor-insulator transition (SIT). We show that the current-voltage (I-V) characteristics are mirror-symmetric with respect to the SIT and can be switched to each other by the applied magnetic field. In both superconducting and insulating states, the low-temperature I-V characteristics have pronounced diode-like threshold character, demonstrating voltage/current jumps over several orders of magnitude at the corresponding critical current or threshold voltage. We have found that for both states, the theory developed for Josephson junction arrays offers a quantitative description of the experimental results

    Advanced Interconnects: Materials, Processing, and Reliability

    No full text
    status: publishe

    Impact of Plasma Pretreatment and Pore Size on the Sealing of Ultra-Low-k Dielectrics by Self-Assembled Monolayers

    No full text
    Self-assembled monolayers (SAMs) from an 11-cyanoundecyltrichlorosilane (CN-SAM) precursor were deposited on porous SiCOH low-k dielectrics with three different pore radii, namely, 1.7, 0.7, and lower than 0.5 nm. The low-k dielectrics were first pretreated with either O2 or He/H2 plasma in order to generate silanol groups on the hydrophobic pristine surface. Subsequently, the SAMs were chemically grafted to the silanol groups on the low-k surface. The SAMs distribution in the low-k films depends on the pore diameter: if the pore diameter is smaller than the size of the SAMs precursors, the SAM molecules are confined to the surface, while if the pore diameter exceeds the van der Waals radius of the SAMs precursor, the SAMs molecules reach deeper in the dielectric. In the latter case, when the pore sidewalls are made hydrophilic by the plasma treatment, the chemical grafting of the SAM precursors follows the profile of the generated silanol groups. The modification depth induced by the O2 plasma is governed by the diffusion of the oxygen radicals into the pores, which makes it the preferred choice for microporous materials. On the other hand, the vacuum ultraviolet (VUV) light plays a critical role, which makes it more suitable for hydrolyzing mesoporous materials. In addition to the density of the surface -OH groups, the nanoscale concave curvature associated with the pores also affects the molecular packing density and ordering with respect to the self-assembly behavior on flat surfaces. A simple model which correlates the low-k pore structure with the plasma hydrophilization mechanism and the SAMs distribution in the pores is presented.status: publishe
    corecore