301 research outputs found
The dependence on temperature and salinity of dissolved
Recurring latitudinal patterns of the dissolved inorganic carbon (DIC) content and the fugacity of CO2 (fCO2) were observed in East Atlantic surface waters with strong gradients at hydrographic fronts. The dissolved inorganic carbon chemistry clearly displayed the effects of oceanic circulation and of persistent surface water processes. In two cases inorganic carbon components could be used as an indicator of the origin of hydrographic features. Surface water fCO2 below the atmospheric value, low DIC and low salinity north of the equator were ascribed to a combination of high rainfall and low wind speed in the Intertropical Convergence Zone and of biological uptake of CO2. Low surface water DIC and salinity delineated the Congo outflow. Along the cruise tracks calculated titration alkalinity (TA) had an almost linear relationship with salinity, while DIC had an apparent dependence on temperature and salinity. The latter dependence was tested by comparing observed DIC to DIC estimated from fCO2 and a reference value of TA normalised to salinity. Different scenarios of temperature, salinity, fCO2 and nutrient contents were applied. Changes of DIC were found to be indeed related to both temperature and salinity. The latitudinal distribution of DIC could be inferred with an accuracy of 17 μmol kg−1 and a standard deviation of 13 μmol kg−1 from in situ salinity, in situ temperature and the reference values of TA and nutrient contents normalised to in situ salinity (scenario D). The applied technique of estimating DIC from temperature and salinity is a powerful diagnostic tool to evaluate the spatial distribution of DIC.
Педагогическая эвристика в структуре личностно ориентированного образования
Цель статьи: провести анализ различных трактовок педагогической эвристики, определить ее задачи, основные структурные элементы и уровни в системе личностно ориентированного образования.This article is devoted to the pedagogical heurist in the personal oriented education that is the analyses of different approaches to the interpretation of pedagogical heurist is done, the tasks, methods and the main structural elements are determined. The peculiarities of theoretical, methodological, individual-practical levels of pedagogical heurist are examined. The functions of personality are determined on every level, principles of government with heuristic activity are revealed. Important conclusions are done
The seasonal cycle of carbonate system processes in Ryder Bay, West Antarctic Peninsula
The carbon cycle in seasonally sea-ice covered waters remains poorly understood due to both a lack of observational data and the complexity of the system. Here we present three consecutive seasonal cycles of upper ocean dissolved inorganic carbon (DIC) and total alkalinity measurements from Ryder Bay on the West Antarctic Peninsula. We attribute the observed changes in DIC to four processes: mixing of water masses, air–sea CO2 flux, calcium carbonate precipitation/dissolution and photosynthesis/respiration. This approach enables us to resolve the main drivers of the seasonal DIC cycle and also investigate the mechanisms behind interannual variability in the carbonate system. We observe a strong, asymmetric seasonal cycle in the carbonate system, driven by physical processes and primary production. In summer, melting glacial ice and sea ice and a reduction in mixing with deeper water reduce the concentration of DIC in surface waters. The dominant process affecting the carbonate system is net photosynthesis which reduces DIC and the fugacity of CO2, making the ocean a net sink of atmospheric CO2. In winter, mixing with deeper, carbon-rich water and net heterotrophy increase surface DIC concentrations, resulting in pH as low as 7.95 and aragonite saturation states close to 1. We observe no clear seasonal cycle of calcium carbonate precipitation/dissolution but some short-lived features of the carbonate time series strongly suggest that significant precipitation of calcium carbonate does occur in the Bay. The variability observed in this study demonstrates that changes in mixing and sea-ice cover significantly affect carbon cycling in this dynamic environment. Maintaining this unique time series will allow the carbonate system in seasonally sea-ice covered waters to be better understood
CpG-A and B oligodeoxynucleotides enhance the efficacy of antibody therapy by activating different effector cell populations
Immunostimulatory CpG oligodeoxynucleotides (ODNs) can enhance the
therapeutic effect of monoclonal antibodies (mAbs) by enhancing
antibody-dependent cell-mediated cytotoxicity (ADCC). Distinct classes of
CpG ODNs have been found recently to stimulate different effector cell
populations. We used murine cancer models to explore the role of various
effector cell populations in the antitumor activity seen with mAbs
combined with CpG ODNs of the A and B classes. In the 38C13 syngeneic
murine lymphoma model, both CpG A and CpG B enhanced the efficacy of
murine antilymphoma mAb. Depletion of natural killer (NK) cells alone
markedly decreased the efficacy of therapy with mAbs plus CpG A. In
contrast, depletion of both NK cells and granulocytes was required to
decrease the efficacy of mAb plus CpG B. A human (h) Fc gamma receptor I
(FcgammaRI)-expressing transgenic (Tg) mouse model was used to explore the
role of FcgammaRI in therapy with mAb and CpG ODN. CpG B induced
up-regulation of FcgammaRI in hFcgammaRI Tg mice, whereas CpG A did not.
In vitro CpG B also enhanced ADCC of HER-2/neu-expressing tumor cells by
the FcgammaRI-directed bispecific antibody MDX-H210 using
hFcgammaRI-positive effector cells. In a solid tumor model, tumor growth
was inhibited in Tg mice treated with a combination of MDX-H210 and CpG B.
These data suggest that CpG A enhance ADCC largely by activating NK cells.
In contrast, other effector cell populations, including granulocytes,
contribute to the antitumor activity of CpG B and mAbs. FcgammaRI plays an
important role in this activity
Angular Conditions,Relations between Breit and Light-Front Frames, and Subleading Power Corrections
We analyze the current matrix elements in the general collinear (Breit)
frames and find the relation between the ordinary (or canonical) helicity
amplitudes and the light-front helicity amplitudes. Using the conservation of
angular momentum, we derive a general angular condition which should be
satisfied by the light-front helicity amplitudes for any spin system. In
addition, we obtain the light-front parity and time-reversal relations for the
light-front helicity amplitudes. Applying these relations to the spin-1 form
factor analysis, we note that the general angular condition relating the five
helicity amplitudes is reduced to the usual angular condition relating the four
helicity amplitudes due to the light-front time-reversal condition. We make
some comments on the consequences of the angular condition for the analysis of
the high- deuteron electromagnetic form factors, and we further apply the
general angular condition to the electromagnetic transition between spin-1/2
and spin-3/2 systems and find a relation useful for the analysis of the
N- transition form factors. We also discuss the scaling law and the
subleading power corrections in the Breit and light-front frames.Comment: 24 pages,2 figure
Overview of the MOSAiC expedition:Ecosystem
An international and interdisciplinary sea ice drift expedition, the ‘The Multidisciplinary drifting Observatory for the Study of Arctic Climate‘ (MOSAiC), was conducted from October 2019 to September 2020. The aim of MOSAiC was to study the interconnected physical, chemical and biological characteristics and processes from the atmosphere to the deep sea of the central Arctic system. The ecosystem team addressed current knowledge gaps and explored unknown biological properties over a complete seasonal cycle focusing on three major research areas: biodiversity, biogeochemical cycles and linkages to the environment. In addition to the coverage of core properties along a complete seasonal cycle, dedicated projects covered specific processes and habitats, or organisms on higher taxonomic or temporal resolution. A wide range of sampling approaches from sampling, sea ice coring, lead sampling to CTD rosette-based water sampling, plankton nets, ROVs and acoustic buoys was applied to address the science objectives. Further, a wide range of process-related measurements to address e.g. productivity patterns, seasonal migrations and diversity shifts were conducted both in situ and onboard RV Polarstern. This paper provides a detailed overview of the sampling approaches used to address the three main science objectives. It highlights the core sampling program and provides examples of two habitat- or process-specific projects. First results presented include high biological activities in winter time and the discovery of biological hotspots in underexplored habitats. The unique interconnectivity of the coordinated sampling efforts also revealed insights into cross-disciplinary interactions like the impact of biota on Arctic cloud formation. This overview further presents both lessons learned from conducting such a demanding field campaign and an outlook on spin-off projects to be conducted over the next years
Overview of the MOSAiC expedition:Ecosystem
An international and interdisciplinary sea ice drift expedition, the ‘The Multidisciplinary drifting Observatory for the Study of Arctic Climate‘ (MOSAiC), was conducted from October 2019 to September 2020. The aim of MOSAiC was to study the interconnected physical, chemical and biological characteristics and processes from the atmosphere to the deep sea of the central Arctic system. The ecosystem team addressed current knowledge gaps and explored unknown biological properties over a complete seasonal cycle focusing on three major research areas: biodiversity, biogeochemical cycles and linkages to the environment. In addition to the coverage of core properties along a complete seasonal cycle, dedicated projects covered specific processes and habitats, or organisms on higher taxonomic or temporal resolution. A wide range of sampling approaches from sampling, sea ice coring, lead sampling to CTD rosette-based water sampling, plankton nets, ROVs and acoustic buoys was applied to address the science objectives. Further, a wide range of process-related measurements to address e.g. productivity patterns, seasonal migrations and diversity shifts were conducted both in situ and onboard RV Polarstern. This paper provides a detailed overview of the sampling approaches used to address the three main science objectives. It highlights the core sampling program and provides examples of two habitat- or process-specific projects. First results presented include high biological activities in winter time and the discovery of biological hotspots in underexplored habitats. The unique interconnectivity of the coordinated sampling efforts also revealed insights into cross-disciplinary interactions like the impact of biota on Arctic cloud formation. This overview further presents both lessons learned from conducting such a demanding field campaign and an outlook on spin-off projects to be conducted over the next years
- …