11 research outputs found

    Impaired myocardial function does not explain reduced left ventricular filling and stroke volume at rest or during exercise at high altitude

    Get PDF
    Impaired myocardial systolic contraction and diastolic relaxation have been suggested as possible mechanisms contributing to the decreased stroke volume (SV) observed at high altitude (HA). To determine whether intrinsic myocardial performance is a limiting factor in the generation of SV at HA, we assessed left ventricular (LV) systolic and diastolic mechanics and volumes in 10 healthy participants (aged 32 ± 7; mean ± SD) at rest and during exercise at sea level (SL; 344 m) and after 10 days at 5,050 m. In contrast to SL, LV end-diastolic volume was ∼19% lower at rest (P = 0.004) and did not increase during exercise despite a greater untwisting velocity. Furthermore, resting SV was lower at HA (∼17%; 60 ± 10 vs. 70 ± 8 ml) despite higher LV twist (43%), apical rotation (115%), and circumferential strain (17%). With exercise at HA, the increase in SV was limited (12 vs. 22 ml at SL), and LV apical rotation failed to augment. For the first time, we have demonstrated that EDV does not increase upon exercise at high altitude despite enhanced in vivo diastolic relaxation. The increase in LV mechanics at rest may represent a mechanism by which SV is defended in the presence of a reduced EDV. However, likely because of the higher LV mechanics at rest, no further increase was observed up to 50% peak power. Consequently, although hypoxia does not suppress systolic function per se, the capacity to increase SV through greater deformation during submaximal exercise at HA is restricted. during initial exposure to hypobaric hypoxia at high altitude (HA), cardiac output for a given absolute workload is increased to compensate for a lower arterial oxygen content before returning to baseline levels with acclimatization (8). However, after 2-5 days of acclimatization, the required cardiac output is generated through a lower stroke volume (SV) and higher heart rate (38). The reduced SV is suggestive of either lower ventricular filling, potentially caused in part by an impaired myocardial relaxation, or impaired ejection secondary to systolic contractile dysfunction. There is, however, a paucity of data in humans supporting a direct effect of hypoxia on myocardial function at HA (25, 41). The suggestion that hypoxia may impair myocardial systolic function during exercise was proposed nearly 50 years ago (3) and has been revisited more recently (27–29). Negative inotropic effects of hypoxia (arterial oxygen tension of 44 mmHg) have been shown in intact animal models (39) and isolated myocardial fibers under severe hypoxia (1% O2) (33). Exercise training under hypobaric hypoxia is also associated with altered mechanical properties at a cellular level in rodents (9), although chronic hypoxia alone did not decrease myofilament sensitivity to calcium. However, in contrast to animal studies, data in humans indicate that systolic function is maintained or enhanced at HA. For example, Suarez et al. (37) reported the maintenance of systolic function after gradual decompression to a barometric pressure of 282 mmHg, a finding that was subsequently confirmed by numerous investigations during acute and prolonged hypoxic exposure (6, 10, 12, 23, 31). However, of these studies, only Suarez et al. (37) investigated systolic function during light exercise (60 W), where function appeared to be maintained. It is not known whether systolic function is maintained at higher exercise intensities. It has also been speculated that reduced oxygen availability may impair diastolic relaxation at HA (15, 18) and thus explain the decreased left ventricular (LV) end-diastolic volume (EDV) commonly observed (2, 6, 18). However, despite numerous studies reporting a decrease in plasma volume and altered transmitral filling patterns (2, 6, 20), myocardial relaxation was only previously investigated during hypoxia in dogs (15), and no data exist examining LV relaxation during exercise at high altitude. By using sensitive, noninvasive imaging techniques (two-dimensional speckle tracking), it is now possible to examine the LV deformation mechanics (strain, twist, and untwist velocity) that underpin LV systolic and diastolic function. LV strain and twist have been shown to be sensitive measures of global and regional myocardial function, and reveal subclinical dysfunction in patients where ejection fraction is unchanged (16, 22). In addition, diastolic LV untwist velocity correlates well with invasive measures of LV stiffness and provides a temporal link between relaxation and the development of intraventricular pressure gradients (30, 43). Therefore, examination of LV mechanics at HA may determine whether the decreased SV observed at HA is dependent on impaired myocardial relaxation and/or myocardial contractile dysfunction or confirm previous findings of preserved ventricular function during exercise (37). We therefore assessed systolic and diastolic ventricular mechanics during incremental exercise at sea level and HA to examine whether impaired myocardial relaxation or systolic dysfunction explains the previously reported reduction in SV at HA. We hypothesized that at HA, 1) ventricular filling would be lower at rest and during exercise and would be accompanied by a reduction in untwist velocity and 2) systolic mechanics would be impaired during exercise at HA

    Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: a systematic review

    Get PDF
    Objective: Hyperthermia therapy (HT), heating tumors to 40–45 °C, is a known radiotherapy (RT) and chemotherapy sensitizer. The additional benefit of HT to RT for recurrent breast cancer has been proven in multiple randomized trials. However, published outcome after RT + HT varies widely. We performed a systematic review to investigate whether there is a relationship between achieved HT dose and clinical outcome and thermal toxicity for patients with recurrent breast cancer treated with RT + HT. Method: Four databases, EMBASE, PubMed, Cochrane library and clinicaltrials.gov, were searched with the terms breast, radiotherapy, hyperthermia therapy and their synonyms. Final search was performed on 3 April 2019. Twenty-two articles were included in the systematic review, reporting on 2330 patients with breast cancer treated with RT + HT. Results: Thirty-two HT parameters were tested for a relationship with clinical outcome. In studies reporting a relationship, the relationship was significant for complete response in 10/15 studies, in 10/13 studies for duration of local control, in 2/2 studies for overall survival and in 7/11 studies for thermal toxicity. Patients who received high thermal dose had on average 34% (range 27%–53%) more complete responses than patients who received low thermal dose. Patients who achieved higher HT parameters had increased odds/probability on improved clinical outcome and on thermal toxicity. Conclusion: Temperature and thermal dose during HT had significant influence on complete response, duration of local control, overall survival and thermal toxicity of patients with recurrent breast cancer treated with RT + HT. Higher temperature and thermal dose improved outcome, while higher maximum temperature increased incidence of thermal toxicity

    Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices

    Get PDF
    Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle

    Resting pulmonary haemodynamics and shunting: a comparison of sea-level inhabitants to high altitude Sherpas

    Get PDF
    The incidence of blood flow through intracardiac shunt and intrapulmonary arteriovenous anastomoses (IPAVA) may differ between Sherpas permanently residing at high altitude (HA) and sea-level (SL) inhabitants as a result of evolutionary pressure to improve gas exchange and/or resting pulmonary haemodynamics. To test this hypothesis we compared sea-level inhabitants at SL (SL-SL; n = 17), during acute isocapnic hypoxia (SL-HX; n = 7) and following 3 weeks at 5050 m (SL-HA; n = 8 non-PFO subjects) to Sherpas at 5050 m (n = 14). inline image, heart rate, pulmonary artery systolic pressure (PASP) and cardiac index (Qi) were measured during 5 min of room air breathing at SL and HA, during 20 min of isocapnic hypoxia (SL-HX; inline image = 47 mmHg) and during 5 min of hyperoxia (inline image = 1.0; Sherpas only). Intracardiac shunt and IPAVA blood flow was evaluated by agitated saline contrast echocardiography. Although PASP was similar between groups at HA (Sherpas: 30.0 ± 6.0 mmHg; SL-HA: 32.7 ± 4.2 mmHg; P = 0.27), it was greater than SL-SL (19.4 ± 2.1 mmHg; P < 0.001). The proportion of subjects with intracardiac shunt was similar between groups (SL-SL: 41%; Sherpas: 50%). In the remaining subjects, IPAVA blood flow was found in 100% of subjects during acute isocapnic hypoxia at SL, but in only 4 of 7 Sherpas and 1 of 8 SL-HA subjects at rest. In conclusion, differences in resting pulmonary vascular regulation, intracardiac shunt and IPAVA blood flow do not appear to account for any adaptation to HA in Sherpas. Despite elevated pulmonary pressures and profound hypoxaemia, IPAVA blood flow in all subjects at HA was lower than expected compared to acute normobaric hypoxia

    Hypoxia, not pulmonary vascular pressure induces blood flow through intrapulmonary arteriovenous anastomoses

    Get PDF
    Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased with exposure to acute hypoxia and has been associated with pulmonary artery systolic pressure (PASP). We aimed to determine the direct relationship between blood flow through IPAVA and PASP in 10 participants with no detectable intracardiac shunt by comparing: (1) isocapnic hypoxia (control); (2) isocapnic hypoxia with oral administration of acetazolamide (AZ; 250 mg, three times-a-day for 48 h) to prevent increases in PASP, and (3) isocapnic hypoxia with AZ and 8.4% NaHCO3 infusion (AZ+HCO3-) to control for AZ-induced acidosis. Isocapnic hypoxia (20 min) was maintained by end-tidal forcing, blood flow through IPAVA was determined by agitated saline contrast echocardiography and PASP was estimated by Doppler ultrasound. Arterial blood samples were collected at rest before each isocapnic-hypoxia condition to determine pH, [HCO3-], and PaCO2. AZ decreased pH (-0.08 ± 0.01), [HCO3-] (-7.1 ± 0.7 mmol/l), and PaCO2 (-4.5 ± 1.4 mmHg; p<0.01), while intravenous NaHCO3 restored arterial blood gas parameters to control levels. Although PASP increased from baseline in all three hypoxic conditions (p<0.05), a main effect of condition expressed an 11 ± 2% reduction in PASP from control (p<0.001) following AZ administration while intravenous NaHCO3 partially restored the PASP response to isocapnic hypoxia. Blood flow through IPAVA increased during exposure to isocapnic hypoxia (p<0.01) and was unrelated to PASP, cardiac output and pulmonary vascular resistance for all conditions. In conclusion, isocapnic hypoxia induces blood flow through IPAVA independent of changes in PASP and the influence of AZ on the PASP response to isocapnic hypoxia is dependent upon the H+ concentration or PaCO2. Abbreviations list: AZ, acetazolamide; FEV1, forced expiratory volume in 1 second; FIO2, fraction of inspired oxygen; FVC, forced vital capacity; Hb, total haemoglobin; HPV, hypoxic pulmonary vasoconstriction; HR, heart rate; IPAVA, intrapulmonary arteriovenous anastomoses; MAP, mean arterial pressure; PASP, pulmonary artery systolic pressure; PETCO2, end-tidal partial pressure of carbon dioxide; PETO2, end-tidal partial pressure of oxygen; PFO, patent foramen ovale; PVR, pulmonary vascular resistance; Q̇c, cardiac output; RVOT, right ventricular outflow tract; SpO2, oxyhaemoglobin saturation; SV, stroke volume; TRV, tricuspid regurgitant velocity; V̇E, minute ventilation; VTI, velocity-time integra

    Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots

    No full text
    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is reliable and very useful to reduce hot spots without affecting tumor temperature

    Comparison of the clinical performance of a hybrid Alba 4D and the AMC-4 locoregional hyperthermia systems

    Get PDF
    Objective: The in-house developed 70 MHz AMC-4 locoregional hyperthermia system has been in clinical use since 1984. This device was recently commercialized as the Alba 4D (Medlogix®, Rome, Italy), with a similar geometrical 4-waveguide design. At the time of this study a hybrid Alba 4D was installed at our center, which incorporated elements of the AMC-4. This study aims to compare clinical performance of both devices. Methods: During one year after clinical acceptance of the hybrid Alba 4D, both devices were used for treatment delivery in patients scheduled for locoregional hyperthermia. Each patient started with the AMC-4, next sessions were allocated to either device. Possible differences between Alba 4D and AMC-4 sessions in power, achieved temperature T0, T10, T50, T90, T100, treatment time and complaints per session, were evaluated using linear mixed models (LMMs) for repeated measures with patient as random effect. Results: From March 2018 to April 2019, eleven patients with cervical, pancreatic, vaginal carcinoma and uterine leiomyosarcoma received 27 locoregional hyperthermia sessions with the Alba 4D and 34 sessions with the AMC-4. Median number of sessions per patient was 5 (range 3–13). Treatment results for both devices were not significantly different: T50 was 40.5 ± 1.0 °C vs. 40.8 ± 0.7 °C, applied power was 500 ± 79 W vs. 526 ± 108 W, for the Alba 4D vs. AMC-4, respectively. Conclusion: Results of the first patients treated with the hybrid Alba 4D demonstrated comparable clinical performance of the Alba 4D and AMC-4 locoregional hyperthermia systems, and both devices are expected to yield similar favorable clinical results

    Post-operative re-irradiation with hyperthermia in locoregional breast cancer recurrence: Temperature matters

    No full text
    Purpose: To investigate the impact of hyperthermia thermal dose (TD) on locoregional control (LRC), overall survival (OS) and toxicity in locoregional recurrent breast cancer patients treated with postoperative re-irradiation and hyperthermia. Methods: In this retrospective study, 112 women with resected locoregional recurrent breast cancer treated in 2010–2017 with postoperative re-irradiation 8frx4Gy (n = 34) or 23frx2Gy (n = 78), combined with 4–5 weekly hyperthermia sessions guided by invasive thermometry, were subdivided into ‘low’ (n = 56) and ‘high’ TD (n = 56) groups by the best session with highest median cumulative equivalent minutes at 43 °C (Best CEM43T50) < 7.2 min and ≥7.2 min, respectively. Actuarial LRC, OS and late toxicity incidence were analyzed. Backward multivariable Cox regression and inverse probability weighting (IPW) analysis were performed. Results: TD subgroups showed no significant differences in patient/treatment characteristics. Median follow-up was 43 months (range 1–107 months). High vs. low TD was associated with LRC (p = 0.0013), but not with OS (p = 0.29) or late toxicity (p = 0.58). Three-year LRC was 74.0% vs. 92.3% in the low and high TD group, respectively (p = 0.008). After three years, 25.0% and 0.9% of the patients had late toxicity grade 3 and 4, respectively. Multivariable analysis showed that distant metastasis (HR 17.6; 95%CI 5.2–60.2), lymph node involvement (HR 2.9; 95%CI 1.2–7.2), recurrence site (chest wall vs. breast; HR 4.6; 95%CI 1.8–11.6) and TD (low vs. high; HR 4.1; 95%CI 1.4–11.5) were associated with LRC. TD was associated with LRC in IPW analysis (p = 0.0018). Conclusions: High thermal dose (best CEM43T50 ≥ 7.2 min) was associated with significantly higher LRC for patients with locoregional recurrent breast cancer treated with postoperative re-irradiation and hyperthermia, without augmenting toxicity
    corecore