15 research outputs found

    Models of nanoparticle transport in dielectrophoretic microdevices: prediction, parameter estimation and other applications

    Get PDF
    This paper describes the applications of Fourier Bessel series models for characterising the transport of nanoparticles driven by dielectrophoretic forces and randomized by Brownian motion. Nanoparticle transport using dielectrophoresis continues to be an active area of research and models are fundamental for characterising the process. The models have very useful capabilities including prediction of nanoparticle transport, estimation of parameter values from experimental data, and data decomposition into space and time components. The models also give a frequency domain representation that will be applicable for time modulated dielectrophoretic nanoparticle transport

    Breast cancer derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment

    Get PDF
    Tumor-infiltrating myeloid cells contribute to the development of the immunosuppressive tumor microenvironment. Myeloid cell expression of arginase 1 (Arg-1) promotes a protumor phenotype by inhibiting T cell function and depleting extracellular L-arginine, but the mechanism underlying this expression, especially in breast cancer, is poorly understood. In breast cancer clinical samples and in our mouse models, we identified tumor derived GM-CSF as the primary regulator of myeloid cell Arg-1 expression and local immune suppression through a gene knockout screen of breast tumor cell-produced factors. The induction of myeloid cell Arg-1 required GM-CSF and a low pH environment. GM-CSF signaling through STAT3, p38 MAPK, and acid signaling through cAMP were required to activate myeloid cell Arg-1 expression in a STAT6 independent manner. Importantly, breast tumor cell-derived GM-CSF promoted tumor progression by inhibiting host anti-tumor immunity, driving a significant accumulation of Arg-1 expressing myeloid cells compared to lung and melanoma tumors with minimal GM-CSF expression. Blockade of tumoral GM-CSF enhanced the efficacy of tumor-specific adoptive T-cell therapy and immune checkpoint blockade. Taken together, breast tumor cell-derived GM-CSF contributes to the development of the immunosuppressive breast cancer microenvironment by regulating myeloid cell Arg-1 expression and can be targeted to enhance breast cancer immunotherapy

    The dielectrophoretic and travelling wave forces for interdigitated electrode arrays: analytical solution using Fourier series

    No full text
    In alternating current electrokinetics, electric fields are used to generate forces on particles. Techniques have been applied for the manipulation of particles and the measurement of their dielectric properties. The fields are typically generated by microelectrode structures fabricated on planar surfaces. One particular design, using interdigitated bar electrodes, is used both in dielectrophoretic field flow fractionation and travelling wave dielectrophoresis. This paper presents a Fourier series analysis of the dielectrophoretic force on a particle generated by this type of electrode array, for both dielectrophoresis and travelling wave dielectrophoresis. Simple expressions are derived for the force at a distance of the order of the electrode spacing from the electrodes. A full analytical expression is given for the dielectrophoretic force in two dimensions. Comparisons are made with previously published experimental observations

    Possibilities and Limitations of Call-by-Need Space Improvement

    No full text
    Innocent-looking program transformations can easily change the space complexity of lazy functional programs. The theory of space improvement seeks to characterise those local program transformations which are guaranteed never to worsen asymptotic space complexity of any program. Previous work by the authors introduced the space improvement relation and showed that a number of simple local transformation laws are indeed space improvements. This paper seeks an answer to the following questions: is the improvement relation inhabited by interesting program transformations, and, if so, how might they be established? We show that the asymptotic space improvement relation is semantically badly behaved, but that the theory of strong space improvement possesses a xed-point induction theorem which permits the derivation of improvement properties for recursive de nitions. With the help of this tool we explore the landscape of space improvement by considering a range of classical program transformations

    The Path to Fossil Fuel Divestment for Universities: Climate Responsible Investment

    No full text
    corecore