3,679 research outputs found

    The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns

    Get PDF
    The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry. To address these requirements the FASMEE campaign design includes a study plan to guide the suite of required measurements in forested sites representative of many prescribed burning programs in the southeastern United States and increasingly common high-intensity fires in the western United States. Here we provide an overview of the proposed experiment and recommendations for key measurements. The FASMEE study provides a template for additional large-scale experimental campaigns to advance fire science and operational fire and smoke models

    Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley of California during CalNex-2010

    Get PDF
    National ambient air quality standards (NAAQS) have been set for PM_2.5 due to its association with adverse health effects. PM_2.5 design values in the South Coast Air Basin (SoCAB) and San Joaquin Valley of California exceed NAAQS levels, and NH^(+)_(4) and NO^(-)_(3) make up the largest fraction of total PM2.5 mass on polluted days. Here we evaluate fine-scale simulations of PM_(2.5) NH^(+)_(4) and NO^(-)_(3) with the Community Multiscale Air Quality model using measurements from routine networks and the California Research at the Nexus of Air Quality and Climate Change 2010 campaign. The model correctly simulates broad spatial patterns of NH^(+)_(4) and NO^(-)_(3) including the elevated concentrations in eastern SoCAB. However, areas for model improvement have been identified. NH_3 emissions from livestock and dairy facilities appear to be too low, while those related to waste disposal in western SoCAB may be too high. Analyses using measurements from flights over SoCAB suggest that problems with NH3 predictions can influence NO^(-)_(3) predictions there. Offline ISORROPIA II calculations suggest that overpredictions of NH_x in Pasadena cause excessive partitioning of total nitrate to the particle phase overnight, while underpredictions of Na^+ cause too much partitioning to the gas phase during the day. Also, the model seems to underestimate mixing during the evening boundary layer transition leading to excessive nitrate formation on some nights. Overall, the analyses demonstrate fine-scale variations in model performance within and across the air basins. Improvements in inventories and spatial allocations of NH_3 emissions and in parameterizations of sea spray emissions, evening mixing processes, and heterogeneous ClNO_2 chemistry could improve model performance

    Productivity links morphology, symbiont specificity, and bleaching in the evolution of Caribbean octocoral symbioses

    Get PDF
    Many cnidarians host endosymbiotic dinoflagellates from the genus Symbiodinium. It is generally assumed that the symbiosis is mutualistic, where the host benefits from symbiont photosynthesis while providing protection and photosynthetic substrates. Diverse assemblages of symbiotic gorgonian octocorals can be found in hard bottom communities throughout the Caribbean. While current research has focused on the phylo- and population genetics of gorgonian symbiont types and their photo-physiology, relatively less work has focused on biogeochemical benefits conferred to the host and how these benefits vary across host species. Here, we examine this symbiosis among 11 gorgonian species collected in Bocas del Toro, Panama. By coupling light and dark bottle incubations (P/R) with 13C-bicarbonate tracers, we quantified the link between holobiont oxygen metabolism with carbon assimilation and translocation from symbiont to host. Our data show that P/R varied among species, and was correlated with colony morphology and polyp size. Sea fans and sea plumes were net autotrophs (P/R > 1.5) while nine species of sea rods were net heterotrophs with most below compensation (P/R < 1.0). 13C assimilation corroborated the P/R results, and maximum δ13Chost values were strongly correlated with polyp size, indicating higher productivity by colonies with high polyp SA:V. A survey of gorgonian-Symbiodinium associations revealed that productive species maintain specialized, obligate symbioses and are more resistant to coral bleaching, whereas generalist and facultative associations are common among sea rods that have higher bleaching sensitivities. Overall, productivity and polyp size had strong phylogenetic signals with carbon fixation and polyp size showing evidence of trait covariance.published_or_final_versio

    Glueballs and the Pomeron

    Full text link
    Glueballs are considered to be bound states of constituent gluons. Relativistic wave equation for two massive gluons interacting by the funnel-type potential is analyzed. Using two exact asymptotic solutions of the equation, we derive an interpolating mass formula and calculate glueball masses in agreement with the lattice data. We obtain the complex non-linear Pomeron trajectory, αP(t)\alpha_P(t), in the whole region of tt. The real part of the trajectory corresponds to the soft Pomeron, parameters of which are found from the fit of recent HERA data.Comment: 6 pages, 1 figure; The X international school-seminar on the actual problems of microword physics Gomel (Belarus), July 15-16, 200

    Walk well:a randomised controlled trial of a walking intervention for adults with intellectual disabilities: study protocol

    Get PDF
    Background - Walking interventions have been shown to have a positive impact on physical activity (PA) levels, health and wellbeing for adult and older adult populations. There has been very little work carried out to explore the effectiveness of walking interventions for adults with intellectual disabilities. This paper will provide details of the Walk Well intervention, designed for adults with intellectual disabilities, and a randomised controlled trial (RCT) to test its effectiveness. Methods/design - This study will adopt a RCT design, with participants allocated to the walking intervention group or a waiting list control group. The intervention consists of three PA consultations (baseline, six weeks and 12 weeks) and an individualised 12 week walking programme. A range of measures will be completed by participants at baseline, post intervention (three months from baseline) and at follow up (three months post intervention and six months from baseline). All outcome measures will be collected by a researcher who will be blinded to the study groups. The primary outcome will be steps walked per day, measured using accelerometers. Secondary outcome measures will include time spent in PA per day (across various intensity levels), time spent in sedentary behaviour per day, quality of life, self-efficacy and anthropometric measures to monitor weight change. Discussion - Since there are currently no published RCTs of walking interventions for adults with intellectual disabilities, this RCT will examine if a walking intervention can successfully increase PA, health and wellbeing of adults with intellectual disabilities

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    Full text link
    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.Comment: 22 pages, incl. 6 figures, to be published in Z. Phys.

    Modeling NH4NO3 over the San Joaquin Valley During the 2013 DISCOVER-AQ Campaign

    Get PDF
    The San Joaquin Valley (SJV) of California experiences high concentrations of PM2.5 (particulate matter with aerodynamic diameter 2.5 m) during episodes of meteorological stagnation in winter. Modeling PM2.5 NH4NO3 during these episodes is challenging because it involves simulating meteorology in complex terrain under low wind speed and vertically stratified conditions, representing complex pollutant emissions distributions, and simulating daytime and nighttime chemistry that can be influenced by the mixing of urban and rural air masses. A rich dataset of observations related to NH4NO3 formation was acquired during multiple periods of elevated NH4NO3 during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign in SJV in January and February 2013. Here, NH4NO3 is simulated during the SJV DISCOVER-AQ study period with the Community Multiscale Air Quality (CMAQ) model version 5.1, predictions are evaluated with the DISCOVER-AQ dataset, and process analysis modeling is used to quantify HNO3 production rates. Simulated NO3- generally agrees well with routine monitoring of 24-h average NO3-, but comparisons with hourly average NO3- measurements in Fresno revealed differences at higher time resolution. Predictions of gas-particle partitioning of total nitrate (HNO3 + NO3-) and NHx (NH3 + NH4+) generally agreed well with measurements in Fresno, although partitioning of total nitrate to HNO3 was sometimes overestimated at low relative humidity in afternoon. Gas-particle partitioning results indicate that NH4NO3 formation is limited by HNO3 availability in both the model and ambient. NH3 mixing ratios are underestimated, particularly in areas with large agricultural activity, and the spatial allocation of NH3 emissions could benefit from additional work, especially near Hanford. HNO3 production via daytime and nighttime pathways is reasonably consistent with the conceptual model of NH4NO3 formation in SJV, and production peaked aloft between about 160 and 240 m in the model. During a period of elevated NH4NO3, the model predicted that the OH + NO2 pathway contributed 46% to total HNO3 production in SJV and the N2O5 heterogeneous hydrolysis pathway contributed 54%. The relative importance of the OH + NO2 pathway for HNO3 production is predicted to increase as NOx emissions decrease
    corecore