38 research outputs found

    Language development after cochlear implantation: an epigenetic model

    Get PDF
    Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic–phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent–child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child’s acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience

    Registered Ship Notes

    Get PDF
    https://digitalmaine.com/blue_hill_documents/1179/thumbnail.jp

    Sequential and matching analyses of self-injurious behavior a case of overmatching in the natural environment.

    No full text
    In this study, we examined the relation between naturally occurring rates of self-injurious behavior and appropriate communicative behavior using prospective sequential and matching analyses of descriptive data. Results from both analyses suggested reliable covariation between both forms of behavior and staff attention. Findings are discussed in terms of the applicability of quantitative descriptive analyses to characterize behavior-environment relations in natural contexts

    CALCULATING CONTINGENCIES IN NATURAL ENVIRONMENTS: ISSUES IN THE APPLICATION OF SEQUENTIAL ANALYSIS

    No full text
    Analysis and interpretation of behavior–environment relations are increasingly being conducted with data that have been derived descriptively. This paper provides an overview of the logic that underlies a sequential analytic approach to the analysis of descriptive data. Several methods for quantifying sequential relations are reviewed along with their strengths and weaknesses. Data from descriptive analyses are used to illustrate key points. Issues germane to contingency analysis in natural environments are discussed briefly. It is concluded that the conceptual distinctions among contiguity, contingency, and dependency are critical if the logic of sequential analysis is to be extended successfully to a behavior-analytic account of reinforcement in natural environments
    corecore