447 research outputs found

    The gluon and ghost propagator and the influence of Gribov copies

    Get PDF
    The dependence of the Landau gauge gluon and ghost propagators on the choice of Gribov copies is studied in pure SU(3) lattice gauge theory. Whereas the influence on the gluon propagator is small, the ghost propagator becomes clearly affected by the copies in the infrared region. We compare our data with the infrared exponents predicted by the Dyson-Schwinger equation approachComment: Talk presented at Lattice2004(topology), Fermilab, June 21-26, 2004, 3 pages, 3 figure

    Landau gauge ghost and gluon propagators and the Faddeev-Popov operator spectrum

    Get PDF
    In this talk we report on a recent lattice investigation of the Landau gauge gluon and ghost propagators in pure SU(3) lattice gauge theory with a special emphasis on the Gribov copy problem. In the (infrared) region of momenta q20.3GeV2q^2 \le 0.3 \mathrm{GeV}^2 we find the corresponding MOM scheme running coupling αs(q2)\alpha_s(q^2) to rise in qq. We also report on a first SU(3) computation of the ghost-gluon vertex function showing that it deviates only weakly from being constant. In addition we study the spectrum of low-lying eigenvalues and eigenfunctions of the Faddeev-Popov operator as well as the spectral representation of the ghost propagator.Comment: talk given by M. M.-P. at the Workshop on Computational Hadron Physics, Cyprus, September 200

    Propagators in Coulomb gauge from SU(2) lattice gauge theory

    Full text link
    A thorough study of 4-dimensional SU(2) Yang-Mills theory in Coulomb gauge is performed using large scale lattice simulations. The (equal-time) transverse gluon propagator, the ghost form factor d(p) and the Coulomb potential V_{coul} (p) ~ d^2(p) f(p)/p^2 are calculated. For large momenta p, the gluon propagator decreases like 1/p^{1+\eta} with \eta =0.5(1). At low momentum, the propagator is weakly momentum dependent. The small momentum behavior of the Coulomb potential is consistent with linear confinement. We find that the inequality \sigma_{coul} \ge \sigma comes close to be saturated. Finally, we provide evidence that the ghost form factor d(p) and f(p) acquire IR singularities, i.e., d(p) \propto 1/\sqrt{p} and f(p) \propto 1/p, respectively. It turns out that the combination g_0^2 d_0(p) of the bare gauge coupling g_0 and the bare ghost form factor d_0(p) is finite and therefore renormalization group invariant.Comment: 10 pages, 7 figure

    Numerical Study of the Ghost-Gluon Vertex in Landau gauge

    Full text link
    We present a numerical study of the ghost-gluon vertex and of the corresponding renormalization function \widetilde{Z}_1(p^2) in minimal Landau gauge for SU(2) lattice gauge theory. Data were obtained for three different lattice volumes (V = 4^4, 8^4, 16^4) and for three lattice couplings \beta = 2.2, 2.3, 2.4. Gribov-copy effects have been analyzed using the so-called smeared gauge fixing. We also consider two different sets of momenta (orbits) in order to check for possible effects due to the breaking of rotational symmetry. The vertex has been evaluated at the asymmetric point (0;p,-p) in momentum-subtraction scheme. We find that \widetilde{Z}_1(p^2) is approximately constant and equal to 1, at least for momenta p > ~ 1 GeV. This constitutes a nonperturbative verification of the so-called nonrenormalization of the Landau ghost-gluon vertex. Finally, we use our data to evaluate the running coupling constant \alpha_s(p^2).Comment: 19 pages, 6 figures, 9 tables, using axodraw.sty; minor modifications in the abstract, introduction and conclusion

    Coulomb Energy, Remnant Symmetry, and the Phases of Non-Abelian Gauge Theories

    Full text link
    We show that the confining property of the one-gluon propagator, in Coulomb gauge, is linked to the unbroken realization of a remnant gauge symmetry which exists in this gauge. An order parameter for the remnant gauge symmetry is introduced, and its behavior is investigated in a variety of models via numerical simulations. We find that the color-Coulomb potential, associated with the gluon propagator, grows linearly with distance both in the confined and - surprisingly - in the high-temperature deconfined phase of pure Yang-Mills theory. We also find a remnant symmetry-breaking transition in SU(2) gauge-Higgs theory which completely isolates the Higgs from the (pseudo)confinement region of the phase diagram. This transition exists despite the absence, pointed out long ago by Fradkin and Shenker, of a genuine thermodynamic phase transition separating the two regions.Comment: 18 pages, 19 figures, revtex

    On practical problems to compute the ghost propagator in SU(2) lattice gauge theory

    Full text link
    In SU(2) lattice pure gauge theory we study numerically the dependence of the ghost propagator G(p) on the choice of Gribov copies in Lorentz (or Landau) gauge. We find that the effect of Gribov copies is essential in the scaling window region, however, it tends to decrease with increasing beta. On the other hand, we find that at larger beta-values very strong fluctuations appear which can make problematic the calculation of the ghost propagator.Comment: 15 pages, 5 postscript figures. 2 Figures added Revised version as to be published in Phys.Rev.

    Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia

    Get PDF
    Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment

    The Gribov-Zwanziger action in the presence of the gauge invariant, nonlocal mass operator Trd4xFμν(D2)1FμνTr \int d^4x F_{\mu\nu} (D^2)^{-1} F_{\mu\nu} in the Landau gauge

    Full text link
    We prove that the nonlocal gauge invariant mass dimension two operator Fμν(D2)1FμνF_{\mu\nu} (D^2)^{-1} F_{\mu\nu} can be consistently added to the Gribov-Zwanziger action, which implements the restriction of the path integral's domain of integration to the first Gribov region when the Landau gauge is considered. We identify a local polynomial action and prove the renormalizability to all orders of perturbation theory by employing the algebraic renormalization formalism. Furthermore, we also pay attention to the breaking of the BRST invariance, and to the consequences that this has for the Slavnov-Taylor identity.Comment: 30 page

    Inconsistency of Naive Dimensional Regularizations and Quantum Correction to Non-Abelian Chern-Simons-Matter Theory Revisited

    Get PDF
    We find the inconsistency of dimensional reduction and naive dimensional regularization in their applications to Chern-Simons type gauge theories. Further we adopt a consistent dimensional regularization to investigate the quantum correction to non-Abelian Chern-Simons term coupled with fermionic matter. Contrary to previous results, we find that not only the Chern-Simons coefficient receives quantum correction from spinor fields, but the spinor field also gets a finite quantum correction.Comment: 19 pages, RevTex, Feynman diagrams drawn by FEYNMAN routin

    Infrared exponents and the strong-coupling limit in lattice Landau gauge

    Full text link
    We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit beta=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q2ΛQCD2q^2 \ll \Lambda_\mathrm{QCD}^2. In the strong-coupling limit, this same behavior is obtained for the larger values of a^2q^2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge field dynamics. Deviations for a^2q^2 < 1 are well parameterized by a transverse gluon mass 1/a\propto 1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes in Phys. Rev. D81 (2010) 016005.Comment: 17 pages, 12 figures. Revised version (mainly sections I and II); references and comments on subsequent work on the subject added
    corecore