4 research outputs found

    Міністерство фінансів України як головний орган управління державними фінансами

    Get PDF
    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.Funding Agencies|EC FP-7 International Research Staff Exchange Scheme (IRSES) Grant [318520]; Linkoping Linnaeus Initiative for Novel Functional Materials (LiLi-NFM); European Union [604391]; Swedish Research Council (VR) Marie Sklodowska Curie International Career Grant [2015-00679]</p

    Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    No full text
    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.Funding Agencies|EC FP-7 International Research Staff Exchange Scheme (IRSES) Grant [318520]; Linkoping Linnaeus Initiative for Novel Functional Materials (LiLi-NFM); European Union [604391]; Swedish Research Council (VR) Marie Sklodowska Curie International Career Grant [2015-00679]</p

    cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1

    No full text
    The drought hormone abscisic acid (ABA) is widely known to produce reductions in stomatal aperture in guard cells. The second messenger cyclic guanosine 3', 5'-monophosphate (cGMP) is thought to form part of the signalling pathway by which ABA induces stomatal closure. We have examined the signalling events during cGMP-dependent ABA-induced stomatal closure in wild-type Arabidopsis plants and plants of the ABA-insensitive Arabidopsis mutant abi1-1. We show that cGMP acts downstream of hydrogen peroxide (H2O2) and nitric oxide (NO) in the signalling pathway by which ABA induces stomatal closure. H2O2- and NO-induced increases in the cytosolic free calcium concentration ([Ca2+](cyt)) were cGMP-dependent, positioning cGMP upstream of [Ca2+](cyt), and involved the action of the type 2C protein phosphatase ABI1. Increases in cGMP were mediated through the stimulation of guanylyl cyclase by H2O2 and NO. We identify nucleoside diphosphate kinase as a new cGMP target protein in Arabidopsis. This study positions cGMP downstream of ABA-induced changes in H2O2 and NO, and upstream of increases in [Ca2+](cyt) in the signalling pathway leading to stomatal closure
    corecore