123 research outputs found

    Interfacing single-atom catalysis with continuous-flow organic electrosynthesis

    Get PDF
    The global warming crisis has sparked a series of environmentally cautious trends in chemistry, allowing us to rethink the way we conduct our synthesis, and to incorporate more earth-abundant materials in our catalyst design. “Single-atom catalysis” has recently appeared on the catalytic spectrum, and has truly merged the benefits that homogeneous and heterogeneous analogues have to offer. Further still, the possibility to activate these catalysts by means of a suitable electric potential could pave the way for a true integration of diverse synthetic methodologies and renewable electricity. Despite their esteemed benefits, single-atom electrocatalysts are still limited to the energy sector (hydrogen evolution reaction, oxygen reduction, etc.) and numerous examples in the literature still invoke the use of precious metals (Pd, Pt, Ir, etc.). Additionally, batch electroreactors are employed, which limit the intensification of such processes. It is of paramount importance that the field continues to grow in a more sustainable direction, seeking new ventures into the space of organic electrosynthesis and flow electroreactor technologies. In this piece, we discuss some of the progress being made with earth abundant homogeneous and heterogeneous electrocatalysts and flow electrochemistry, within the context of organic electrosynthesis, and highlight the prospects of alternatively utilizing single-atom catalysts for such applications

    Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells.

    Get PDF
    The delicately orchestrated process of bone fracture healing is not always successful and long term non union of fractured bone occurs in 5-20% of all cases. Atrophic fracture non unions have been described as the most difficult to treat and this is thought to arise through a cellular and local failure of osteogenesis. However, little is known about the presence and osteogenic proficiency of cells in the local area of non union tissue. We have examined the growth and differentiation potential of cells isolated from human non union tissues compared with normal human bone marrow mesenchymal stromal cells (BMSC). We report the isolation and culture expansion of a population of non union stromal cells (NUSC) which have a CD profile similar to that of BMSC, i.e. CD34-ve, CD45-ve and CD105+ve. The NUSC demonstrated multipotentiality and differentiated to some extent along chondrogenic, adipogenic and osteogenic lineages. However, and importantly, the NUSC showed significantly reduced osteogenic differentiation and mineralization in vitro compared to BMSC. We also found increased levels of cell senescence in NUSC compared to BMSC based on culture growth kinetics and cell positivity for senescence associated beta galactosidase (SA-beta-Gal) activity. The reduced capacity of NUSC to form osteoblasts was associated with significantly elevated secretion of Dickkopf-1 (Dkk-1) which is an important inhibitor of Wnt signalling during osteogenesis, compared to BMSC. Conversely, treating BMSC with levels of rhDkk-1 that were equivalent to those levels secreted by NUSC inhibited the capacity of BMSC to undergo osteogenesis. Treating BMSC with NUSC conditioned medium also inhibited the capacity of the BMSC to undergo osteogenic differentiation when compared to their treatment with BMSC conditioned medium. Our results suggest that the development of fracture non union is linked with a localised reduced capacity of cells to undergo osteogenesis, which in turn is associated with increased cell senescence and Dkk-1 secretion

    Light-driven C–O coupling of carboxylic acids and alkyl halides over a Ni single-atom catalyst

    Get PDF
    Although visible-light-driven dual photoredox catalysis, a method that combines photoabsorbers and transition metals, has become a powerful tool to conduct coupling reactions, resource economical and scalability issues persist, owing to the use of catalysts and light absorbers that exploit critical raw materials (such as iridium complexes), and are homogeneous in nature. Here we report the merger of metallic single-atom and photoredox catalysis, in the form of a Ni atom-supported carbon nitride material, for the C–O coupling of carboxylic acids and alkyl halides. This operationally straightforward system, composed of only earth-abundant components, exhibits a wide functional group tolerance. Additionally, short reaction times, facile recovery and high catalyst stability make this method highly attractive for industrial applications

    Developing sustainability learning in business school curricula–productive boundary objects and participatory processes

    Full text link
    © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. Sustainability learning is holistic and complex as it draws on diverse disciplines and can be interpreted differently within individual pedagogies. Embedding sustainability across and within business schools relies on developing suitable boundary objects. These may include representations such as models, frameworks or classificatory schemes that are malleable enough to be adapted for use within the disparate disciplines and pedagogies, yet durable enough to be recognisable and to maintain consistency across them. Boundary objects thus allow the sharing of ways of knowing or practice across various social boundaries. This paper outlines how participatory curriculum development processes can enable sustainability to be embedded in a business school curriculum. Distinct phases of the process were marked by different ways of knowing, as disciplinary-specific academics developed and embedded sustainability into and across curricula. Boundary objects were both outcomes and productive facilitators of this process. They acted as catalysts and attracted ongoing processes of dialogue, debate and meaning-making between these academics. The institutional context provided enabling conditions to legitimize outcomes from the participatory process. The process may be replicable in other business schools by the use of boundary objects

    Types of Stem Cells in Regenerative Medicine: A Review

    Get PDF
    Two basic and clinical researches accomplished during the recent years on embryonic and adult stem cells constituted a mutation in regenerative therapy. These cells can be used for treating some degenerative diseases. Between them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson’s and Alzheimer’s diseases, arthritis and muscular, skin, lung, eye, and digestive disorders, aggressive and regressive cancers can be treated by cell therapies. This review focused on types of stem cells used in regenerative medicine

    CD271-selected mesenchymal stem cells from adipose tissue enhance cartilage repair and are less angiogenic than plastic adherent mesenchymal stem cells

    Get PDF
    CD271 is a marker of bone marrow MSCs with enhanced differentiation capacity for bone or cartilage repair. However, the nature of CD271+ MSCs from adipose tissue (AT) is less well understood. Here, we investigated the differentiation, wound healing and angiogenic capacity of plastic adherent MSCs (PA MSCs) versus CD271+ MSCs from AT. There was no difference in the extent to which PA MSCs and CD271+ MSCs formed osteoblasts, adipocytes or chondrocytes in vitro. In contrast, CD271+ MSCs transplanted into athymic rats significantly enhanced osteochondral wound healing with reduced vascularisation in the repair tissue compared to PA MSCs and control animals; there was little histological evidence of mature articular cartilage formation in all animals. Conditioned medium from CD271+ MSC cultures was less angiogenic than PA MSC conditioned medium, and had little effect on endothelial cell migration or endothelial tubule formation in vitro. The low angiogenic activity of CD271+ MSCs and improved early stage tissue repair of osteochondral lesions when transplanted, along with a comparable differentiation capacity along mesenchymal lineages when induced, suggests that these selected cells are a better candidate than PA MSCs for the repair of cartilaginous tissue

    Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow derived mesenchymal stem cells (MSCs) are promising candidates for cell based therapies in myocardial infarction. However, the exact underlying cellular mechanisms are still not fully understood. Our aim was to explore the possible role of direct cell-to-cell interaction between ischemic H9c2 cardiomyoblasts and normal MSCs. Using an in vitro ischemia model of 150 minutes of oxygen glucose deprivation we investigated cell viability and cell interactions with confocal microscopy and flow cytometry.</p> <p>Results</p> <p>Our model revealed that adding normal MSCs to the ischemic cell population significantly decreased the ratio of dead H9c2 cells (H9c2 only: 0.85 ± 0.086 vs. H9c2+MSCs: 0.16 ± 0.035). This effect was dependent on direct cell-to-cell contact since co-cultivation with MSCs cultured in cell inserts did not exert the same beneficial effect (ratio of dead H9c2 cells: 0.90 ± 0.055). Confocal microscopy revealed that cardiomyoblasts and MSCs frequently formed 200-500 nm wide intercellular connections and cell fusion rarely occurred between these cells.</p> <p>Conclusion</p> <p>Based on these results we hypothesize that mesenchymal stem cells may reduce the number of dead cardiomyoblasts after ischemic damage via direct cell-to-cell interactions and intercellular tubular connections may play an important role in these processes.</p

    Characteristics of Stem Cells Derived from the Degenerated Human Intervertebral Disc Cartilage Endplate

    Get PDF
    Mesenchymal stem cells (MSCs) derived from adult tissues are an important candidate for cell-based therapies and regenerative medicine due to their multipotential differentiation capability. MSCs have been identified in many adult tissues but have not reported in the human intervertebral disc cartilage endplate (CEP). The initial purpose of this study was to determine whether MSCs exist in the degenerated human CEP. Next, the morphology, proliferation capacity, cell cycle, cell surface epitope profile and differentiation capacity of these CEP-derived stem cells (CESCs) were compared with bone-marrow MSCs (BM-MSCs). Lastly, whether CESCs are a suitable candidate for BM-MSCs was evaluated. Isolated cells from degenerated human CEP were seeded in an agarose suspension culture system to screen the proliferative cell clusters. Cell clusters were chosen and expanded in vitro and were compared with BM-MSCs derived from the same patient. The morphology, proliferation rate, cell cycle, immunophenotype and stem cell gene expression of the CESCs were similar to BM-MSCs. In addition, the CESCs could be induced into osteoblasts, adipocytes, chondrocytes, and are superior to BM-MSCs in terms of osteogenesis and chondrogenesis. This study is first to demonstrate the presence of stem cells in the human degenerated CEP. These results may improve our understanding of intervertebral disc (IVD) pathophysiology and the degeneration process, and could provide cell candidates for cell-based regenerative medicine and tissue engineering

    Mesenchymal Stem Cells Exhibit Firm Adhesion, Crawling, Spreading and Transmigration across Aortic Endothelial Cells: Effects of Chemokines and Shear

    Get PDF
    Mesenchymal stem cells (MSCs) have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs) with, and their migration across, murine aortic endothelial cells (MAECs), and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10min) and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia). They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis
    corecore