12 research outputs found

    Plasmodium falciparum resistance to anti-malarial drugs in Papua New Guinea: evaluation of a community-based approach for the molecular monitoring of resistance

    Get PDF
    ABSTRACT: BACKGROUND: Molecular monitoring of parasite resistance has become an important complementary tool in establishing rational anti-malarial drug policies. Community surveys provide a representative sample of the parasite population and can be carried out more rapidly than accrual of samples from clinical cases, but it is not known whether the frequencies of genetic resistance markers in clinical cases differ from those in the overall population, or whether such community surveys can provide good predictions of treatment failure rates. METHODS: Between 2003 and 2005, in vivo drug efficacy of amodiaquine or chloroquine plus sulphadoxine-pyrimethamine was determined at three sites in Papua New Guinea. The genetic drug resistance profile (i.e., 33 single nucleotide polymorphisms in Plasmodium falciparum crt, mdr1, dhfr, dhps, and ATPase6) was concurrently assessed in 639 community samples collected in the catchment areas of the respective health facilities by using a DNA microarray-based method. Mutant allele and haplotype frequencies were determined and their relationship with treatment failure rates at each site in each year was investigated. RESULTS: PCR-corrected in vivo treatment failure rates were between 12% and 28% and varied by site and year with variable longitudinal trends. In the community samples, the frequencies of mutations in pfcrt and pfmdr1 were high and did not show significant changes over time. Mutant allele frequencies in pfdhfr were moderate and those in pfdhps were low. No mutations were detected in pfATPase6. There was much more variation between sites than temporal, within-site, variation in allele and haplotype frequencies. This variation did not correlate well with treatment failure rates. Allele and haplotype frequencies were very similar in clinical and community samples from the same site. CONCLUSIONS: The relationship between parasite genetics and in vivo treatment failure rate is not straightforward. The frequencies of genetic anti-malarial resistance markers appear to be very similar in community and clinical samples, but cannot be used to make precise predictions of clinical outcome. Thus, indicators based on molecular data have to be considered with caution and interpreted in the local context, especially with regard to prior drug usage and level of pre-existing immunity. Testing community samples for molecular drug resistance markers is a complementary tool that should help decision-making for the best treatment options and appropriate potential alternative

    A Recombinant Blood-Stage Malaria Vaccine Reduces Plasmodium falciparum Density and Exerts Selective Pressure on Parasite Populations in a Phase 1-2b Trial in Papua New Guinea

    Get PDF
    The malaria vaccine Combination B comprises recombinant Plasmodium falciparum ring-infected erythrocyte surface antigen and 2 merozoite surface proteins (MSP1 and MSP2) formulated in oil-based adjuvant. A phase 1-2b double-blind, randomized, placebo-controlled trial in 120 children (5-9 years old) in Papua New Guinea demonstrated a 62% (95% confidence limits: 13%, 84%) reduction in parasite density in children not pretreated with sulfadoxine-pyrimethamine. Vaccinees had a lower prevalence of parasites carrying the MSP2-3D7 allelic form (corresponding to that in the vaccine) and a higher incidence of morbid episodes associated with FC27-type parasites. These results demonstrate functional activity of Combination B against P. falciparum in individuals with previous malaria exposure. The specific effects on parasites with particular msp2 genotypes suggest that the MSP2 component, at least in part, accounted for the activity. The vaccine-induced selection pressure exerted on the parasites and its consequences for morbidity strongly argue for developing vaccines comprising conserved antigens and/or multiple components covering all important allelic type

    Heterogeneous distribution of <it>Plasmodium falciparum </it>drug resistance haplotypes in subsets of the host population

    No full text
    Abstract Background The emergence of drug resistance is a major problem in malaria control. For mathematical modelling of the transmission and spread of drug resistance the determinant parameters need to be identified and measured. The underlying hypothesis is that mutations associated with drug resistance incur fitness costs to the parasite in absence of drug pressure. The distribution of drug resistance haplotypes in different subsets of the host population was investigated. In particular newly acquired haplotypes after radical cure were characterized and compared to haplotypes from persistent infections. Methods Mutations associated with antimalarial drug resistance were analysed in parasites from children, adults, and new infections occurring after treatment. Twenty-five known single nucleotide polymorphisms from four Plasmodium falciparum genes associated with drug resistance were genotyped by DNA chip technology. Results Haplotypes were found to differ between subsets of the host population. A seven-fold mutated haplotype was significantly reduced in adults compared to children and new infections, whereas parasites harbouring fewer mutations were more frequent in adults. Conclusion The reduced frequency of highly mutated parasites in chronic infections in adults is likely a result of fitness costs of drug resistance that increases with number of mutations and is responsible for reduced survival of mutant parasites.</p

    Age-Dependent Cellular Immune Responses to Plasmodium vivax

    No full text

    Heterogeneous distribution of Plasmodium falciparum drug resistance haplotypes in subsets of the host population

    Get PDF
    BackgroundThe emergence of drug resistance is a major problem in malaria control. For mathematical modelling of the transmission and spread of drug resistance the determinant parameters need to be identified and measured. The underlying hypothesis is that mutations associated with drug resistance incur fitness costs to the parasite in absence of drug pressure. The distribution of drug resistance haplotypes in different subsets of the host population was investigated. In particular newly acquired haplotypes after radical cure were characterized and compared to haplotypes from persistent infections. MethodsMutations associated with antimalarial drug resistance were analysed in parasites from children, adults, and new infections occurring after treatment. Twenty-five known single nucleotide polymorphisms from four Plasmodium falciparum genes associated with drug resistance were genotyped by DNA chip technology. ResultsHaplotypes were found to differ between subsets of the host population. A seven-fold mutated haplotype was significantly reduced in adults compared to children and new infections, whereas parasites harbouring fewer mutations were more frequent in adults. ConclusionThe reduced frequency of highly mutated parasites in chronic infections in adults is likely a result of fitness costs of drug resistance that increases with number of mutations and is responsible for reduced survival of mutant parasites

    Epitope-Specific Humoral Immunity to Plasmodium vivax Duffy Binding Protein

    No full text
    Erythrocyte invasion by Plasmodium vivax is completely dependent on binding to the Duffy blood group antigen by the parasite Duffy binding protein (DBP). The receptor-binding domain of this protein lies within a cysteine-rich region referred to as region II (DBPII). To examine whether antibody responses to DBP correlate with age-acquired immunity to P. vivax, antibodies to recombinant DBP (rDBP) were measured in 551 individuals residing in a village endemic for P. vivax in Papua New Guinea, and linear epitopes mapped in the critical binding region of DBPII. Antibody levels to rDBP(II) increased with age. Four dominant linear epitopes were identified, and the number of linear epitopes recognized by semiimmune individuals increased with age, suggesting greater recognition with repeated infection. Some individuals had antibodies to rDBP(II) but not to the linear epitopes, indicating the presence of conformational epitopes. This occurred in younger individuals or subjects acutely infected for the first time with P. vivax, indicating that repeated infection is required for recognition of linear epitopes. All four dominant B-cell epitopes contained polymorphic residues, three of which showed variant-specific serologic responses in over 10% of subjects examined. In conclusion, these results demonstrate age-dependent and variant-specific antibody responses to DBPII and implicate this molecule in partial acquired immunity to P. vivax in populations in endemic areas

    Comparison of haplotypes between adults (cross section) and new infections of the treatment to reinfection study

    No full text
    * indicates significant difference of haplotype frequency between the two compared groups.<p><b>Copyright information:</b></p><p>Taken from "Heterogeneous distribution of drug resistance haplotypes in subsets of the host population"</p><p>http://www.malariajournal.com/content/7/1/78</p><p>Malaria Journal 2008;7():78-78.</p><p>Published online 6 May 2008</p><p>PMCID:PMC2391149.</p><p></p

    Comparison of haplotypes between children of the cross sectional surveys and baseline samples and new infections from the treatment to reinfection study (TRS)

    No full text
    There are no significant differences in haplotype frequencies between groups.<p><b>Copyright information:</b></p><p>Taken from "Heterogeneous distribution of drug resistance haplotypes in subsets of the host population"</p><p>http://www.malariajournal.com/content/7/1/78</p><p>Malaria Journal 2008;7():78-78.</p><p>Published online 6 May 2008</p><p>PMCID:PMC2391149.</p><p></p
    corecore