26 research outputs found

    Editorial: Antibodies and other biopharmaceuticals

    Get PDF

    ΠŸΡΠ³ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄ создания ΠΏΡ€ΠΎΠ»ΠΎΠ½Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ биофармацСвтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² (Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ пэгилированного Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ΅ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°)

    Get PDF
    By now the pegylation of biologically active molecules including proteins with an inert hydrophilic polymer polyethylene glycol (PEG) is an important area in the new generation of prolonged-action pharmaceutical preparations. The conjugated molecules usually have an improved pharmacokinetic profile, including reduced renal clearance, additional protection from the proteolytic enzymes and reduced immunogenicity, thus preserving the in vivo activity of the native preparation in the human body for a longer time. This review is focused on the example of the pegylation of recombinant human granulocyte colony-stimulating factor (G-CSF) and gives the opportunity to have a look at different ways of pegylation and the mechanism of this reaction. Besides, the review describes the different types of reactive PEG for the specific conjugation to biological molecules and benefits and disadvantages of these reagents.Π’ настоящСС врСмя пэгилированиС биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», Π² Ρ‚ΠΎΠΌ числС Π±Π΅Π»ΠΊΠΎΠ², с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΈΠ½Π΅Ρ€Ρ‚Π½ΠΎΠ³ΠΎ Π³ΠΈΠ΄Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° полиэтилСнгликоля (ΠŸΠ­Π“) прСдставляСт собой Π²Π°ΠΆΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² создании Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния фармацСвтичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΎΠ»ΠΎΠ½Π³ΠΈΡ€ΠΎΠ²Π°Π½-Π½ΠΎΠ³ΠΎ дСйствия. ΠšΠΎΠ½ΡŠΡŽΠ³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΈΠΌΠ΅ΡŽΡ‚ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹ΠΉ фармакокинСтичСский ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒ, Π² Ρ‚ΠΎΠΌ числС ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΉ клирСнс, Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π·Π°Ρ‰ΠΈΡ‚Ρƒ ΠΎΡ‚ дСйствия ΠΏΡ€ΠΎΡ‚Π΅ΠΎ-литичСских Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈ Π½ΠΈΠ·ΠΊΡƒΡŽ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ позволяСт ΡΠΎΡ…Ρ€Π°Π½ΠΈΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ in vivo Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π² чСловСчСском ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π”Π°Π½Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€ Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с соврСмСнными ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°ΠΌΠΈ пэгилирования Π±ΠΈΠΎΡ„Π°Ρ€ΠΌΠ°Ρ†Π΅Π²-тичСских ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΠΈ Π½Π° основС ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ΠΎΠ² с ΠŸΠ­Π“ ΠΈ рассматриваСт, ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€, пэгилированиС Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ чСловСчСского Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ΅ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° (Ρ€Ρ‡Π“-КБЀ). Π’Π°ΠΊΠΆΠ΅ Π² ΠΎΠ±Π·ΠΎΡ€Π΅ прСдставлСны Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠŸΠ­Π“-Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ² для Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ присоСдинСния ΠΊ биологичСским ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π°ΠΌ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΈΡ… прСимущСства ΠΈ нСдостатки

    Thermodynamic model of hardness: Particular case of boron-rich solids

    Get PDF
    A number of successful theoretical models of hardness have been developed recently. A thermodynamic model of hardness, which supposes the intrinsic character of correlation between hardness and thermodynamic properties of solids, allows one to predict hardness of known or even hypothetical solids from the data on Gibbs energy of atomization of the elements, which implicitly determine the energy density per chemical bonding. The only structural data needed is the coordination number of the atoms in a lattice. Using this approach, the hardness of known and hypothetical polymorphs of pure boron and a number of boron-rich solids has been calculated. The thermodynamic interpretation of the bonding energy allows one to predict the hardness as a function of thermodynamic parameters. In particular, the excellent agreement between experimental and calculated values has been observed not only for the room- temperature values of the Vickers hardness of stoichiometric compounds, but also for its temperature and concentration dependencies

    Pegylation, as method of production prolonged forms of biopharmaceutical drugs (pegylated granulocyte colony-stimulating factor as case of study)

    No full text
    By now the pegylation of biologically active molecules including proteins with an inert hydrophilic polymer polyethylene glycol (PEG) is an important area in the new generation of prolonged-action pharmaceutical preparations. The conjugated molecules usually have an improved pharmacokinetic profile, including reduced renal clearance, additional protection from the proteolytic enzymes and reduced immunogenicity, thus preserving the in vivo activity of the native preparation in the human body for a longer time. This review is focused on the example of the pegylation of recombinant human granulocyte colony-stimulating factor (G-CSF) and gives the opportunity to have a look at different ways of pegylation and the mechanism of this reaction. Besides, the review describes the different types of reactive PEG for the specific conjugation to biological molecules and benefits and disadvantages of these reagents
    corecore