6,893 research outputs found

    Monitoring the CMS strip tracker readout system

    Get PDF
    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

    Data acquisition software for the CMS strip tracker

    Get PDF
    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

    ‘Video Replay: Families, films and fantasy’ as a transformational text: Commentary on Valerie Walkerdine's ‘Video Replay’.

    Get PDF
    In this commentary I explore the significance of Valerie Walkerdine's paper ‘Video Replay: Families, Films and Fantasy’. I review its impact in 1986 and then discuss how some of its ideas about subjectivity and popular culture – specifically film - can be developed in the contemporary context. A recurring fantasy of Rocky II and its reception is that of social and psychological transformation. I address this theme by drawing on the work of Christopher Bollas to argue that Walkerdine's psychosocial analysis continues to facilitate, across a range of contexts, some of the transformational processes described in her article

    The CMS Tracker Readout Front End Driver

    Full text link
    The Front End Driver, FED, is a 9U 400mm VME64x card designed for reading out the Compact Muon Solenoid, CMS, silicon tracker signals transmitted by the APV25 analogue pipeline Application Specific Integrated Circuits. The FED receives the signals via 96 optical fibers at a total input rate of 3.4 GB/sec. The signals are digitized and processed by applying algorithms for pedestal and common mode noise subtraction. Algorithms that search for clusters of hits are used to further reduce the input rate. Only the cluster data along with trigger information of the event are transmitted to the CMS data acquisition system using the S-LINK64 protocol at a maximum rate of 400 MB/sec. All data processing algorithms on the FED are executed in large on-board Field Programmable Gate Arrays. Results on the design, performance, testing and quality control of the FED are presented and discussed

    Emergence of good conduct, scaling and Zipf laws in human behavioral sequences in an online world

    Get PDF
    We study behavioral action sequences of players in a massive multiplayer online game. In their virtual life players use eight basic actions which allow them to interact with each other. These actions are communication, trade, establishing or breaking friendships and enmities, attack, and punishment. We measure the probabilities for these actions conditional on previous taken and received actions and find a dramatic increase of negative behavior immediately after receiving negative actions. Similarly, positive behavior is intensified by receiving positive actions. We observe a tendency towards anti-persistence in communication sequences. Classifying actions as positive (good) and negative (bad) allows us to define binary 'world lines' of lives of individuals. Positive and negative actions are persistent and occur in clusters, indicated by large scaling exponents alpha~0.87 of the mean square displacement of the world lines. For all eight action types we find strong signs for high levels of repetitiveness, especially for negative actions. We partition behavioral sequences into segments of length n (behavioral `words' and 'motifs') and study their statistical properties. We find two approximate power laws in the word ranking distribution, one with an exponent of kappa-1 for the ranks up to 100, and another with a lower exponent for higher ranks. The Shannon n-tuple redundancy yields large values and increases in terms of word length, further underscoring the non-trivial statistical properties of behavioral sequences. On the collective, societal level the timeseries of particular actions per day can be understood by a simple mean-reverting log-normal model.Comment: 6 pages, 5 figure

    Attention and automation: New perspectives on mental underload and performance

    Get PDF
    There is considerable evidence in the ergonomics literature that automation can significantly reduce operator mental workload. Furthermore, reducing mental workload is not necessarily a good thing, particularly in cases where the level is already manageable. This raises the issue of mental underload, which can be at least as detrimental to performance as overload. However, although it is widely recognized that mental underload is detrimental to performance, there are very few attempts to explain why this may be the case. It is argued in this paper that, until the need for a human operator is completely eliminated, automation has psychological implications relevant in both theoretical and applied domains. The present paper reviews theories of attention, as well as the literature on mental workload and automation, to synthesize a new explanation for the effects of mental underload on performance. Malleable attentional resources theory proposes that attentional capacity shrinks to accommodate reductions in mental workload, and that this shrinkage is responsible for the underload effect. The theory is discussed with respect to the applied implications for ergonomics research

    Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system

    Get PDF
    We describe the development of a miniaturized broadband near-infrared spectroscopy system (bNIRS), which measures changes in cerebral tissue oxyhemoglobin (  [  HbO₂ ]  ) and deoxyhemoglobin ([HHb]) plus tissue metabolism via changes in the oxidation state of cytochrome-c-oxidase ([oxCCO]). The system is based on a small light source and a customized mini-spectrometer. We assessed the instrument in a preclinical study in 27 newborn piglets undergoing transient cerebral hypoxia-ischemia (HI). We aimed to quantify the recovery of the HI insult and estimate the severity of the injury. The recovery in brain oxygenation (Δ  [  HbDiff  ]    =  Δ  [  HbO₂  ]    −  Δ  [  HHb  ]  ), blood volume (Δ  [  HbT  ]    =  Δ  [  HbO₂  ]    +  Δ  [  HHb  ]  ), and metabolism (Δ  [  oxCCO  ]  ) for up to 30 min after the end of HI were quantified in percentages using the recovery fraction (RF) algorithm, which quantifies the recovery of a signal with respect to baseline. The receiver operating characteristic analysis was performed on bNIRS-RF measurements compared to proton (H1) magnetic resonance spectroscopic (MRS)-derived thalamic lactate/N-acetylaspartate (Lac/NAA) measured at 24-h post HI insult; Lac/NAA peak area ratio is an accurate surrogate marker of neurodevelopmental outcome in babies with neonatal HI encephalopathy. The Δ  [  oxCCO  ]  -RF cut-off threshold of 79% within 30 min of HI predicted injury severity based on Lac/NAA with high sensitivity (100%) and specificity (93%). A significant difference in thalamic Lac/NAA was noticed (p  <  0.0001) between the two groups based on this cut-off threshold of 79% Δ  [  oxCCO  ]  -RF. The severe injury group (n  =  13) had ∼30  %   smaller recovery in Δ  [  HbDiff  ]  -RF (p  =  0.0001) and no significant difference was observed in Δ  [  HbT  ]  -RF between groups. At 48 h post HI, significantly higher P31-MRS-measured inorganic phosphate/exchangeable phosphate pool (epp) (p  =  0.01) and reduced phosphocreatine/epp (p  =  0.003) were observed in the severe injury group indicating persistent cerebral energy depletion. Based on these results, the bNIRS measurement of the oxCCO recovery fraction offers a noninvasive real-time biomarker of brain injury severity within 30 min following HI insult

    Square-tiled cyclic covers

    Full text link
    A cyclic cover of the complex projective line branched at four appropriate points has a natural structure of a square-tiled surface. We describe the combinatorics of such a square-tiled surface, the geometry of the corresponding Teichm\"uller curve, and compute the Lyapunov exponents of the determinant bundle over the Teichm\"uller curve with respect to the geodesic flow. This paper includes a new example (announced by G. Forni and C. Matheus in \cite{Forni:Matheus}) of a Teichm\"uller curve of a square-tiled cyclic cover in a stratum of Abelian differentials in genus four with a maximally degenerate Kontsevich--Zorich spectrum (the only known example found previously by Forni in genus three also corresponds to a square-tiled cyclic cover \cite{ForniSurvey}). We present several new examples of Teichm\"uller curves in strata of holomorphic and meromorphic quadratic differentials with maximally degenerate Kontsevich--Zorich spectrum. Presumably, these examples cover all possible Teichm\"uller curves with maximally degenerate spectrum. We prove that this is indeed the case within the class of square-tiled cyclic covers.Comment: 34 pages, 6 figures. Final version incorporating referees comments. In particular, a gap in the previous version was corrected. This file uses the journal's class file (jmd.cls), so that it is very similar to published versio

    Searching for New Physics Through AMO Precision Measurements

    Full text link
    We briefly review recent experiments in atomic, molecular, and optical physics using precision measurements to search for physics beyond the Standard Model. We consider three main categories of experiments: searches for changes in fundamental constants, measurements of the anomalous magnetic moment of the electron, and searches for an electric dipole moment of the electron.Comment: Prepared for Comments on AMO Physics at Physica Script
    corecore