59 research outputs found

    MapSense: Design and Field Study of Interactive Maps for Children Living with Visual Impairments

    Get PDF
    We report on the design process leading to the creation of MapSense, a multi-sensory interactive map for visually impaired children. We conducted a formative study in a specialized institute to understand children’s educational needs, their context of care and their preferences regarding interactive technologies. The findings (1) outline the needs for tools and methods to help children to acquire spatial skills and (2) provide four design guidelines for educational assistive technologies. Based on these findings and an iterative process, we designed and deployed MapSense in the institute during two days. It enables collaborations between children with a broad range of impairments, proposes reflective and ludic scenarios and allows caretakers to customize it as they wish. A field experiment reveals that both children and caretakers considered the system successful and empowering

    MapSense: multi-sensory interactive maps for children living with visual impairments

    Get PDF
    We report on the design process leading to the creation of MapSense, a multi-sensory interactive map for visually impaired children. We conducted a formative study in a specialized institute to understand children’s educational needs, their context of care and their preferences regarding interactive technologies. The findings (1) outline the needs for tools and methods to help children to acquire spatial skills and (2) provide four design guidelines for educational assistive technologies. Based on these findings and an iterative process, we designed and deployed MapSense in the institute during two days. It enables collaborations between children with a broad range of impairments, proposes reflective and ludic scenarios and allows caretakers to customize it as they wish. A field experiment reveals that both children and caretakers considered the system successful and empowering

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Procès-verbal de la cérémonie de Notre-Dame, lors de la séance du 14 février 1790

    No full text
    Mulot François-Valentin, Bailly Jean Sylvain. Procès-verbal de la cérémonie de Notre-Dame, lors de la séance du 14 février 1790. In: Archives Parlementaires de 1787 à 1860 - Première série (1787-1799) Tome XI - Du 24 décembre 1789 au 1er mars 1790. Paris : Librairie Administrative P. Dupont, 1880. pp. 596-600

    Procès-verbal de la cérémonie de Notre-Dame, lors de la séance du 14 février 1790

    No full text
    Mulot François Valentin, Bailly Jean Sylvain. Procès-verbal de la cérémonie de Notre-Dame, lors de la séance du 14 février 1790. In: Archives Parlementaires de 1787 à 1860 - Première série (1787-1799) Tome XI - Du 24 décembre 1789 au 1er mars 1790. Paris : Librairie Administrative P. Dupont, 1880. pp. 596-600

    Microwave microscopy: Effect of material deposition on the distributions of E/H-fields in the vicinity of electronic circuits

    No full text
    This proposal is devoted to a collaborative approach dealing with microwave microscopy experiments. The application is dedicated to electromagnetic field  cartography above circuits and the influence of nanometric material layer deposition on the circuits. The first application is associated to microstrip circuits. The results are in agreement with the simulated fields. The second application is focused on the effects of a dielectric layer deposited on the circuit and its impact in terms of electric modes propagation and shielding effectiveness

    Genome-Wide Analysis of Antigen 43 (Ag43) Variants: New Insights in Their Diversity, Distribution and Prevalence in Bacteria

    No full text
    International audienceAntigen 43 (Ag43) expression induces aggregation and biofilm formation that has consequences for bacterial colonisation and infection. Ag43 is secreted through the Type 5 subtype “a” secretion system (T5aSS) and is a prototypical member of the family of self-associating autotransporters (SAATs). As a T5aSS protein, Ag43 has a modular architecture comprised of (i) a signal peptide, (ii) a passenger domain that can be subdivided into three subdomains (SL, EJ, and BL), (iii) an autochaperone (AC) domain, and (iv) an outer membrane translocator. The cell-surface SL subdomain is directly involved in the “Velcro-handshake” mechanism resulting in bacterial autoaggregation. Ag43 is considered to have a ubiquitous distribution in E. coli genomes and many strains harbour multiple agn43 genes. However, recent phylogenetic analyses indicated the existence of four distinct Ag43 classes exhibiting different propensities for autoaggregation and interactions. Given the knowledge of the diversity and distribution of Ag43 in E. coli genomes is incomplete, we have performed a thorough in silico investigation across bacterial genomes. Our comprehensive analyses indicate that Ag43 passenger domains cluster in six phylogenetic classes associated with different SL subdomains. The diversity of Ag43 passenger domains is a result of the association of the SL subtypes with two different EJ-BL-AC modules. We reveal that agn43 is almost exclusively present among bacterial species of the Enterobacteriaceae family and essentially in the Escherichia genus (99.6%) but that it is not ubiquitous in E. coli. The gene is typically present as a single copy but up to five copies of agn43 with different combinations of classes can be observed. The presence of agn43 as well as its different classes appeared to differ between Escherichia phylogroups. Strikingly, agn43 is present in 90% of E. coli from E phylogroup. Our results shed light on Ag43 diversity and provide a rational framework for investigating its role in E. coli ecophysiology and physiopathology

    Large-scale phosphoproteomics reveals activation of the MAPK/GADD45β/P38 axis and cell cycle inhibition in response to BMP9 and BMP10 stimulation in endothelial cells

    No full text
    International audienceAbstract Background BMP9 and BMP10 are two major regulators of vascular homeostasis. These two ligands bind with high affinity to the endothelial type I kinase receptor ALK1, together with a type II receptor, leading to the direct phosphorylation of the SMAD transcription factors. Apart from this canonical pathway, little is known. Interestingly, mutations in this signaling pathway have been identified in two rare cardiovascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. Methods To get an overview of the signaling pathways modulated by BMP9 and BMP10 stimulation in endothelial cells, we employed an unbiased phosphoproteomic-based strategy. Identified phosphosites were validated by western blot analysis and regulated targets by RT-qPCR. Cell cycle analysis was analyzed by flow cytometry. Results Large-scale phosphoproteomics revealed that BMP9 and BMP10 treatment induced a very similar phosphoproteomic profile. These BMPs activated a non-canonical transcriptional SMAD-dependent MAPK pathway (MEKK4/P38). We were able to validate this signaling pathway and demonstrated that this activation required the expression of the protein GADD45β. In turn, activated P38 phosphorylated the heat shock protein HSP27 and the endocytosis protein Eps15 (EGF receptor pathway substrate), and regulated the expression of specific genes (E-selectin, hyaluronan synthase 2 and cyclooxygenase 2). This study also highlighted the modulation in phosphorylation of proteins involved in transcriptional regulation (phosphorylation of the endothelial transcription factor ERG) and cell cycle inhibition (CDK4/6 pathway). Accordingly, we found that BMP10 induced a G1 cell cycle arrest and inhibited the mRNA expression of E2F2 , cyclinD1 and cyclinA1 . Conclusions Overall, our phosphoproteomic screen identified numerous proteins whose phosphorylation state is impacted by BMP9 and BMP10 treatment, paving the way for a better understanding of the molecular mechanisms regulated by BMP signaling in vascular diseases
    corecore