42,532 research outputs found
Combining motility and bioluminescent signalling aids mate finding in deep-sea fish: a simulation study
We present a model to estimate the mean time required for mate finding among deep-sea fish as a function of motility and the extent of bioluminescent signalling. This model differs from those of previous works in 3 important ways by including (1) sex differences in motility, (2) a maximum detection range of bioluminescent signals derived from a recently published mechanistic model based on physical principles and the physiology of vision, and (3) a novel consideration of the likelihood of individuals passing within detection range only in the interval between flashes and hence, failing to detect the signaller. We argue that the flash rates required for effective detection are low, with rates of less than 1 per minute being entirely plausible, and that predation pressure may further encourage low flash rates. Further, even at high flash frequencies, the energetic cost of bioluminescent signalling is argued to be a trivial fraction of resting metabolic rates. Using empirically derived estimates for parameter values, we estimate that a female will be detected and reached by a male within 2 to 4 h of beginning to signal. Hence, we argue that mate finding may not seriously restrict reproductive success in species that can exploit this signalling system. We further argue that where male motility allows bioluminescent signalling, this may have some advantages over chemical-based signalling. Bioluminescent signalling may, therefore, be more important to mate finding in the deep sea (relative to chemical signals) than some previous works have suggested
Cryogenic flux-concentrator
Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources
Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation
Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved
A Search for Biomolecules in Sagittarius B2 (LMH) with the ATCA
We have used the Australia Telescope Compact Array to conduct a search for
the simplest amino acid, glycine (conformers I and II), and the simple chiral
molecule propylene oxide at 3-mm in the Sgr B2 LMH. We searched 15 portions of
spectrum between 85 and 91 GHz, each of 64 MHz bandwidth, and detected 58
emission features and 21 absorption features, giving a line density of 75
emission lines and 25 absorption lines per GHz stronger than the 5 sigma level
of 110 mJy. Of these, 19 are transitions previously detected in the
interstellar medium, and we have made tentative assignments of a further 23
features to molecular transitions. However, as many of these involve molecules
not previously detected in the ISM, these assignments cannot be regarded with
confidence. Given the median line width of 6.5 km/s in Sgr B2 LMH, we find that
the spectra have reached a level where there is line confusion, with about 1/5
of the band being covered with lines. Although we did not confidently detect
either glycine or propylene oxide, we can set 3 sigma upper limits for most
transitions searched. We also show that if glycine is present in the Sgr B2 LMH
at the level of N = 4 x 10^{14} cm^{-2} found by Kuan et al. (2003) in their
reported detection of glycine, it should have been easily detected with the
ATCA synthesized beam size of 17.0 x 3.4 arcsec^{2}, if it were confined to the
scale of the LMH continuum source (< 5 arcsec). This thus puts a strong upper
limit on any small-scale glycine emission in Sgr B2, for both of conformers I
and II.Comment: 12 pages, 2 figures, 5 tables, accepted by MNRA
Open and Closed Loop Stability of Hingeless Rotor Helicopter Air and Ground Resonance
The air and ground resonance instabilities of hingeless rotor helicopters are examined on a relatively broad parametric basis including the effects of blade tuning, virtual hinge locations, and blade hysteresis damping, as well as size and scale effects in the gross weight range from 5,000 to 48,000 pounds. A special case of a 72,000 pound helicopter air resonance instability is also included. The study shows that nominal to moderate and readily achieved levels of blade inertial hysteresis damping in conjunction with a variety of tuning and/or feedback conditions are highly effective in dealing with these instabilities. Tip weights and reductions in pre-coning angles are also shown to be effective means for improving the air resonance instability
Characteristic impedance of microstrip lines
The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results
Putative fishery-induced changes in biomass and population size structures of demersal deep-sea fishes in ICES Sub-area VII, Northeast Atlantic Ocean
This work was supported by a series of NERC grants to the principal investigators including NE/C512961/1. The results of the early joint SAMS and IOS surveys were digitized with support from EU MAST Contract MAS2-CT920033 1993–1995, and data analyses was supported by EU FP7 Projects HERMES and HERMIONE. We thank Alain Zuur from Highland Statistics Ltd. for advice with the statistical analyses and Odd Aksel Bergstad for valuable comments that helped to improve the manuscript. We thank the ships’ companies of the RRS Challenger and RRS Discovery.Peer reviewedPublisher PD
The Populations of Comet-Like Bodies in the Solar system
A new classification scheme is introduced for comet-like bodies in the Solar
system. It covers the traditional comets as well as the Centaurs and
Edgeworth-Kuiper belt objects. At low inclinations, close encounters with
planets often result in near-constant perihelion or aphelion distances, or in
perihelion-aphelion interchanges, so the minor bodies can be labelled according
to the planets predominantly controlling them at perihelion and aphelion. For
example, a JN object has a perihelion under the control of Jupiter and aphelion
under the control of Neptune, and so on. This provides 20 dynamically distinct
categories of outer Solar system objects in the Jovian and trans-Jovian
regions. The Tisserand parameter with respect to the planet controlling
perihelion is also often roughly constant under orbital evolution. So, each
category can be further sub-divided according to the Tisserand parameter. The
dynamical evolution of comets, however, is dominated not by the planets nearest
at perihelion or aphelion, but by the more massive Jupiter. The comets are
separated into four categories -- Encke-type, short-period, intermediate and
long-period -- according to aphelion distance. The Tisserand parameter
categories now roughly correspond to the well-known Jupiter-family comets,
transition-types and Halley-types. In this way, the nomenclature for the
Centaurs and Edgeworth-Kuiper belt objects is based on, and consistent with,
that for comets.Comment: MNRAS, in press, 11 pages, 6 figures (1 available as postscript, 5 as
gif). Higher resolution figures available at
http://www-thphys.physics.ox.ac.uk/users/WynEvans/preprints.pd
Recommended from our members
An Evaluation of a Battery of Functional and Structural Tests as Predictors of Likely Risk of Progression of Age-Related Macular Degeneration.
Purpose: To evaluate the ability of visual function and structural tests to identify the likely risk of progression from early/intermediate to advanced AMD, using the Age-Related Eye Disease Study (AREDS) simplified scale as a surrogate for risk of progression. The secondary aim was to determine the relationship between disease severity grade and the observed functional and structural deficits. Methods: A total of 100 participants whose AMD status varied from early to advanced were recruited. Visual function was assessed using cone dark adaptation, 14 Hz flicker and chromatic threshold tests and retinal structure was assessed by measuring drusen volume and macular thickness. The predictive value of the tests was estimated using ordinal regression analysis. Group comparisons were assessed using analysis of covariance. Results: Change in cone dark adaptation (cone τ) and yellow-blue (YB) chromatic sensitivity were independent predictors for AMD progression risk (cone τ, pseudo R2 = 0.35, P < 0.001; YB chromatic threshold, pseudo R2 = 0.16, P < 0.001). The only structural predictor was foveal thickness (R2 = 0.05, P = 0.047). Chromatic sensitivity and cone dark adaptation were also the best functional tests at distinguishing between severity groups. Drusen characteristics clearly differentiated between participants with early and advanced disease, but were not able to differentiate between those with early AMD and controls. Mean differences in retinal thickness existed between severity groups at the foveal (P = 0.040) and inner (P = 0.001) subfields. Conclusions: This study indicates that cone τ, YB chromatic threshold and foveal thickness are independent predictors of likely risk of AMD progression
- …
