33,500 research outputs found

    Optimality of neighbor-balanced designs for total effects

    Full text link
    The purpose of this paper is to study optimality of circular neighbor-balanced block designs when neighbor effects are present in the model. In the literature many optimality results are established for direct effects and neighbor effects separately, but few for total effects, that is, the sum of direct effect of treatment and relevant neighbor effects. We show that circular neighbor-balanced designs are universally optimal for total effects among designs with no self neighbor. Then we give efficiency factors of these designs, and show some situations where a design with self neighbors is preferable to a neighbor-balanced design.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000048

    Poincaré maps define topography of Vlasov distribution functions consistent with stochastic dynamics

    Get PDF
    In a recent paper [A. D. Bailey et al., Phys. Rev. Lett. 34, 3124 (1993)], the authors presented direct planar laser induced fluorescence measurements of the oscillatory ion fluid velocity field in the presence of a large amplitude drift-Alfven wave. Surprisingly, the measured speeds were an order of magnitude lower than predicted by standard fluid theory, yet the flow pattern was consistent with the fluid theory. A new model, based on the connection between stochasticity and bulk behavior, is presented which gives insights into the cause of this behavior. It is shown that when particle motion is stochastic, invariant sets of a 'Poincaré map' define a flat-topped particle distribution function consistent with both the electromagnetic field driving the Vlasov equation and the fine-scale single particle dynamics. The approach is described for the general case and explored for a slab model of the observed drift wave

    A Framework for Specifying and Monitoring User Tasks

    Get PDF
    Knowledge about user task execution can help systems better reason about when to interrupt users. To enable recognition and forecasting of task execution, we develop a novel framework for specifying and monitoring user task sequences. For task specification, our framework provides an XML-based language with tags inspired by regular expressions. For task monitoring, our framework provides an event handler that manages events from any instrumented application and a monitor that observes a user's transitions within and among specified tasks. The monitor supports multiple active tasks and multiple instances of the same task. The use of our framework will enable systems to consider a user's position within a task model when reasoning about when to interrupt

    Requirements for multidisciplinary design of aerospace vehicles on high performance computers

    Get PDF
    The design of aerospace vehicles is becoming increasingly complex as the various contributing disciplines and physical components become more tightly coupled. This coupling leads to computational problems that will be tractable only if significant advances in high performance computing systems are made. Some of the modeling, algorithmic and software requirements generated by the design problem are discussed

    Overground vs. Treadmill Running: Do Runners Use the Same Strategy to Adjust Stride Length and Frequency While Running at Different Velocities?

    Full text link
    Running speed is determined by stride frequency and stride length. As running speed is adjusted, runners make greater adjustments in stride length at slower speeds with a shift to stride frequency adjustments at the faster speeds. The relationship between stride frequency and stride length is largely based on overground research which leads to the purpose of this study to analyze whether the connection of stride frequency and stride length will adjust similar due to changes in running velocity during overground and treadmill running. The protocol was recently approved by The Institutional Review Board and data collection is currently in progress; - thus the following present abstract does not contain data. In order to compare runner’s gait pattern responses to velocity changes, two wearable technologies (Garmin Fenix2, Garmin, Kansas, USA; runScribe, Scribe Lab, San Francisco, USA) designed to measure stride length and stride frequency will be utilized. Subjects will run at a variety of velocities overground and then on the treadmill with speeds ranging from slow, preferred, and fast. The main dependent variables will be stride frequency and stride length. The null hypothesis is: The relationship between stride length and stride frequency is similar while running overground and on a treadmill at different velocities. The results of this study will be helpful to runners as well as development of wearable technology used to quantify run metrics

    Fast C-V method to mitigate effects of deep levels in CIGS doping profiles

    Full text link
    In this work, methods to determine more accurate doping profiles in semiconductors is explored where trap-induced artifacts such as hysteresis and doping artifacts are observed. Specifically in CIGS, it is shown that this fast capacitance-voltage (C-V) approach presented here allows for accurate doping profile measurement even at room temperature, which is typically not possible due to the large ratio of trap concentration to doping. Using deep level transient spectroscopy (DLTS) measurement, the deep trap responsible for the abnormal C-V measurement above 200 K is identified. Importantly, this fast C-V can be used for fast evaluation on the production line to monitor the true doping concentration, and even estimate the trap concentration. Additionally, the influence of high conductance on the apparent doping profile at different temperature is investigated

    Characterization of a spheromak plasma gun: The effect of refractory electrode coatings

    Get PDF
    In order to investigate the proposition that high-Z impurities are responsible for the anomalously short lifetime of the Caltech spheromak, the center electrode of the spheromak plasma gun has been coated with a variety of metals (bare steel, copper, nickel, chromium, rhodium, and tungsten). Visible light (230–890 nm) emitted directly from the plasma in the gun breech was monitored for each of the coated electrodes. Plasma density and temperature and spheromak lifetime were compared for each electrode. Results indicate little difference in gun performance or macroscopic plasma parameters. The chromium and tungsten electrodes performed marginally better in that a previously reported helicity injection effect [Phys. Rev. Lett. 64, 2144 (1990)] is only observed in discharges using these electrode coatings. There are subtle differences in the detailed line emission spectra from the different electrodes, but the spectra are remarkably similar. The fact that (1) contrary to expectations, attempts to reduce high-Z impurities had only marginal effect on the spheromak lifetime coupled with (2) an estimate of Zeff<2 based on a 0-D model suggests that it is not impurities but some other mechanism that limits the lifetime of small, cold spheromaks. We will discuss the general characteristics of the spheromak gun as well as effects due to the coatings

    A Search for Biomolecules in Sagittarius B2 (LMH) with the ATCA

    Full text link
    We have used the Australia Telescope Compact Array to conduct a search for the simplest amino acid, glycine (conformers I and II), and the simple chiral molecule propylene oxide at 3-mm in the Sgr B2 LMH. We searched 15 portions of spectrum between 85 and 91 GHz, each of 64 MHz bandwidth, and detected 58 emission features and 21 absorption features, giving a line density of 75 emission lines and 25 absorption lines per GHz stronger than the 5 sigma level of 110 mJy. Of these, 19 are transitions previously detected in the interstellar medium, and we have made tentative assignments of a further 23 features to molecular transitions. However, as many of these involve molecules not previously detected in the ISM, these assignments cannot be regarded with confidence. Given the median line width of 6.5 km/s in Sgr B2 LMH, we find that the spectra have reached a level where there is line confusion, with about 1/5 of the band being covered with lines. Although we did not confidently detect either glycine or propylene oxide, we can set 3 sigma upper limits for most transitions searched. We also show that if glycine is present in the Sgr B2 LMH at the level of N = 4 x 10^{14} cm^{-2} found by Kuan et al. (2003) in their reported detection of glycine, it should have been easily detected with the ATCA synthesized beam size of 17.0 x 3.4 arcsec^{2}, if it were confined to the scale of the LMH continuum source (< 5 arcsec). This thus puts a strong upper limit on any small-scale glycine emission in Sgr B2, for both of conformers I and II.Comment: 12 pages, 2 figures, 5 tables, accepted by MNRA

    Revised reference model for nitric acid

    Get PDF
    A nearly global set of data on the nitric acid distribution was obtained for seven months by the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on the Nimbus 7 spacecraft. The evaluation of the accuracy, precision, and resolution of these data is described, and a description of the major features of the nitric acid distributions is presented. The zonal mean for nitric acid is distributed in a stratospheric layer that peaks near 30 mb, with the largest mixing ratios occurring in polar regions, especially in winter

    Climate change at the ecosystem scale: a 50-year record in New Hampshire

    Get PDF
    Observing the full range of climate change impacts at the local scale is difficult. Predicted rates of change are often small relative to interannual variability, and few locations have sufficiently comprehensive long-term records of environmental variables to enable researchers to observe the fine-scale patterns that may be important to understanding the influence of climate change on biological systems at the taxon, community, and ecosystem levels. We examined a 50-year meteorological and hydrological record from the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, an intensively monitored Long-Term Ecological Research site. Of the examined climate metrics, trends in temperature were the most significant (ranging from 0.7 to 1.3 °C increase over 40–50 year records at 4 temperature stations), while analysis of precipitation and hydrologic data yielded mixed results. Regional records show generally similar trends over the same time period, though longer-term (70–102 year) trends are less dramatic. Taken together, the results from HBEF and the regional records indicate that the climate has warmed detectably over 50 years, with important consequences for hydrological processes. Understanding effects on ecosystems will require a diversity of metrics and concurrent ecological observations at a range of sites, as well as a recognition that ecosystems have existed in a directionally changing climate for decades, and are not necessarily in equilibrium with the current climate
    • …
    corecore