2,651 research outputs found

    Resonant Absorption as Mode Conversion? II. Temporal Ray Bundle

    Full text link
    A fast-wave pulse in a simple, cold, inhomogeneous MHD model plasma is constructed by Fourier superposition over frequency of harmonic waves that are singular at their respective Alfven resonances. The pulse partially reflects before reaching the resonance layer, but also partially tunnels through to it to mode convert to an Alfven wave. The exact absorption/conversion coefficient for the pulse is shown to be given precisely by a function of transverse wavenumber tabulated in Paper I of this sequence, and to be independent of frequency and pulse width.Comment: 6 pages, 4 figures, accepted (15 Nov 2010) by Solar Physics. Ancillary file (animation) attache

    Gait analysis in a <i>Mecp2</i> knockout mouse model of Rett syndrome reveals early-onset and progressive motor deficits

    Get PDF
    Rett syndrome (RTT) is a genetic disorder characterized by a range of features including cognitive impairment, gait abnormalities and a reduction in purposeful hand skills. Mice harbouring knockout mutations in the &lt;i&gt;Mecp2&lt;/i&gt; gene display many RTT-like characteristics and are central to efforts to find novel therapies for the disorder. As hand stereotypies and gait abnormalities constitute major diagnostic criteria in RTT, it is clear that motor and gait-related phenotypes will be of importance in assessing preclinical therapeutic outcomes. We therefore aimed to assess gait properties over the prodromal phase in a functional knockout mouse model of RTT. In male &lt;i&gt;Mecp2&lt;/i&gt; knockout mice, we observed alterations in stride, coordination and balance parameters at 4 weeks of age, before the onset of other overt phenotypic changes as revealed by observational scoring. These data suggest that gait measures may be used as a robust and early marker of &lt;i&gt;Mecp2&lt;/i&gt;-dysfunction in future preclinical therapeutic studies

    Neutral Evolution as Diffusion in phenotype space: reproduction with mutation but without selection

    Full text link
    The process of `Evolutionary Diffusion', i.e. reproduction with local mutation but without selection in a biological population, resembles standard Diffusion in many ways. However, Evolutionary Diffusion allows the formation of local peaks with a characteristic width that undergo drift, even in the infinite population limit. We analytically calculate the mean peak width and the effective random walk step size, and obtain the distribution of the peak width which has a power law tail. We find that independent local mutations act as a diffusion of interacting particles with increased stepsize.Comment: 4 pages, 2 figures. Paper now representative of published articl

    The structure of epitaxial V2O3 films and their surfaces : a medium energy ion scattering study

    Get PDF
    Medium energy ion scattering, using 100 keV H+ incident ions, has been used to investigate the growth of epitaxial films, up to thicknesses of ~200 Å, of V2O3 on both Pd(111) and Au(111). Scattered-ion energy spectra provide a measure of the average film thickness and the variations in this thickness, and show that, with suitable annealing, the crystalline quality is good. Plots of the scattering yield as a function of scattering angle, so-called blocking curves, have been measured for two different incidence directions and have been used to determine the surface structure. Specifically, scattering simulations for a range of different model structures show poor agreement with experiment for half-metal (….V’O3V) and vanadyl (….V’O3V=O) terminations, with and without surface interlayer relaxations. However, good agreement with experiment is found for the modified oxygen-termination structure, first proposed by Kresse et al., in which a subsurface V half-metal layer is moved up into the outermost V buckled metal layer to produce a VO2 overlayer on the underlying V2O3, with an associated layer structure of ….O3VV’’V’O3

    Mini-mast CSI testbed user's guide

    Get PDF
    The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included

    Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal.

    Get PDF
    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility

    Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: Observations in three patients

    Get PDF
    Mesangial IgA1 in IgA nephropathy exhibits aberrant O-glycosylation: Observations in three patients.BackgroundIn IgA nephropathy (IgAN), circulating IgA1 molecules display an abnormal pattern of O-glycosylation. This abnormality may potentially contribute to mesangial IgA1 deposition, but this is unproven because the O-glycosylation of mesangial IgA1 has not been analyzed.MethodsIgA1 was eluted from glomeruli isolated from the kidneys of three IgAN patients obtained after nephrectomy or at postmortem. Serum from these patients, other patients with IgAN, and controls was subjected to the same treatment as the glomerular eluates. The O-glycosylation of eluted and serum IgA1 was measured by lectin binding using an enzyme-linked immunosorbent assay-based system.ResultsIn all three cases, the lectin binding of IgA1 eluted from the glomeruli of IgAN patients was markedly higher than that of the serum IgA1 of the same individual, and also all but one of a series of serum IgA1 samples from other patients and controls.ConclusionsThe higher lectin binding of glomerular compared with serum IgA1 suggests that O-glycosylated IgA1 molecules abnormally and selectively deposit in the kidney. These results provide the first evidence that mesangial IgA1 is abnormally O-glycosylated, and support a direct role for abnormal IgA1 O-glycosylation in the mechanism of mesangial IgA deposition in IgAN

    Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    Get PDF
    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbonbased nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials
    • …
    corecore