33,810 research outputs found
Recommended from our members
Predicting Category Intuitiveness With the Rational Model, the Simplicity Model, and the Generalized Context Model
Naïve observers typically perceive some groupings for a set of stimuli as more intuitive than others. The problem of predicting category intuitiveness has been historically considered the remit of models of unsupervised categorization. In contrast, this article develops a measure of category intuitiveness from one of the most widely supported models of supervised categorization, the generalized context model (GCM). Considering different category assignments for a set of instances, the authors asked how well the GCM can predict the classification of each instance on the basis of all the other instances. The category assignment that results in the smallest prediction error is interpreted as the most intuitive for the GCM—the authors refer to this way of applying the GCM as “unsupervised GCM.” The authors systematically compared predictions of category intuitiveness from the unsupervised GCM and two models of unsupervised categorization: the simplicity model and the rational model. The unsupervised GCM compared favorably with the simplicity model and the rational model. This success of the unsupervised GCM illustrates that the distinction between supervised and unsupervised categorization may need to be reconsidered. However, no model emerged as clearly superior, indicating that there is more work to be done in understanding and modeling category intuitiveness
Long-term evolution of 1991 DA: A dynamically evolved extinct Halley-type comet
The long-term dynamical evolution of 21 variational orbits for the intermediate-period asteroid 1991 DA was followed for up to +/-10(exp 5) years from the present. 1991 DA is close to the 2:7 resonance with Jupiter; it has avoided close encounters, within 1 AU, with this planet for at least the past 30,000 years, even at the node crossing. The future evolution typically shows no close encounters with Jupiter within at least 50,000 years. This corresponds to the mean time between node crossings with either Jupiter or Saturn. Close encounters with Saturn and Jupiter lead to a chaotic evolution for the whole ensemble, while secular perturbations cause large-amplitude swings in eccentricity and inclination (the latter covering the range 15 deg approximately less than i approximately less than 85 deg) which correlate with deep excursions of the perihelion distance to values much less than 1 AU. These variations are similar to those found in P/Machholz and a variety of other high-inclination orbits, e.g., P/Hartley-IRAS. We emphasize the connection between the orbital evolution of 1991 DA and that of Halley-type comets. If 1991 DA was once a comet, it is not surprising that it is now extinct
Simulations of the Population of Centaurs II: Individual Objects
Detailed orbit integrations of clones of five Centaurs -- namely, 1996 AR20,
2060 Chiron, 1995 SN55, 2000 FZ53 and 2002 FY36 -- for durations of 3 Myr are
presented. One of our Centaur sample starts with perihelion initially under the
control of Jupiter (1996 AR20), two start under the control of Saturn (Chiron
and 1995 SN55) and one each starts under the control of Uranus (2000 FZ53) and
Neptune (2002 FY36) respectively. A variety of interesting pathways are
illustrated with detailed examples including: capture into the Jovian Trojans,
repeated bursts of short-period comet behaviour, capture into mean-motion
resonances with the giant planets and into Kozai resonances, as well as
traversals of the entire Solar system. For each of the Centaurs, we provide
statistics on the numbers (i) ejected, (ii) showing short-period comet
behaviour and (iii) becoming Earth and Mars crossing. For example, Chiron has
over 60 % of its clones becoming short-period objects, whilst 1995 SN55 has
over 35 %. Clones of these two Centaurs typically make numerous close
approaches to Jupiter. At the other extreme, 2000 FZ53 has roughly 2 % of its
clones becoming short-period objects. In our simulations, typically 20 % of the
clones which become short-period comets subsequently evolve into
Earth-crossers.Comment: 10 pages, in press at MNRA
Do agonistic behaviours bias baited remote underwater video surveys of fish?
Marine environments require monitoring to determine the effects of impacts such as climate change, coastal development and pollution and also to assess the effectiveness of conservation measures. Marine protected areas (MPAs) are being established globally and require periodic monitoring to determine whether their objectives are being met. Baited underwater video systems are becoming a popular method for monitoring change within protected fish populations, because they are less damaging to habitats than bottom trawling and allow for more statistical powerful comparisons to determine spatial and temporal patterns in the relative abundances, lengths and biomass of demersal and pelagic fishes. However, much remains uncertain about how interactions between the fish and bait and between the fish themselves affect the results obtained. Agonistic behaviours are frequently observed around the bait of the camera and potentially bias fish density estimates by altering the number and size classes seen at cameras. Here we counted the number of agonistic behaviours between pink snappers (Pagrus auratus), the size of fish involved and whether the fish left the field of view following such behaviours. The study consisted of 20 baited underwater video deployments inside a New Zealand marine reserve and 20 in adjacent open areas. We observed a significant relationship between the peak number of fish observed at the camera and the total number of agonistic behaviours, as well as the number of both aggressor and subordinate fish leaving the camera field of view following interactions. The slope of the latter relationship and thus the absolute numbers of fish leaving were higher for subordinate fish. As subordinates were significantly smaller than aggressors, the apparent size frequency distribution is likely skewed away from smaller size classes. The staying time of the fish and thus the maximum number of fish present at the camera will be reduced by agonistic behaviours and the absolute magnitude of this effect appears to be greater at high fish densities. Our results suggest that an overall effect of these phenomena is to underestimate the differences in abundance between MPAs and open areas, but also to overestimate differences in average size
Rotorcraft digital advanced avionics system (RODAAS) functional description
A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented
UAV as a Reliable Wingman: A Flight Demonstration
In this brief, we present the results from a flight experiment demonstrating two significant advances in software enabled control: optimization-based control using real-time trajectory generation and logical programming environments for formal analysis of control software. Our demonstration platform consisted of a human-piloted F-15 jet flying together with an autonomous T-33 jet. We describe the behavior of the system in two scenarios. In the first, nominal state communications were present and the autonomous aircraft maintained formation as the human pilot flew maneuvers. In the second, we imposed the loss of high-rate communications and demonstrated an autonomous safe “lost wingman” procedure to increase separation and reacquire contact. The flight demonstration included both a nominal formation flight component and an execution of the lost wingman scenario
Generalized Integer Partitions, Tilings of Zonotopes and Lattices
In this paper, we study two kinds of combinatorial objects, generalized
integer partitions and tilings of two dimensional zonotopes, using dynamical
systems and order theory. We show that the sets of partitions ordered with a
simple dynamics, have the distributive lattice structure. Likewise, we show
that the set of tilings of zonotopes, ordered with a simple and classical
dynamics, is the disjoint union of distributive lattices which we describe. We
also discuss the special case of linear integer partitions, for which other
dynamical systems exist. These results give a better understanding of the
behaviour of tilings of zonotopes with flips and dynamical systems involving
partitions.Comment: See http://www.liafa.jussieu.fr/~latapy
Recommended from our members
Spire stimulates nucleation by Cappuccino and binds both ends of actin filaments.
The actin nucleators Spire and Cappuccino synergize to promote actin assembly, but the mechanism of their synergy is controversial. Together these proteins promote the formation of actin meshes, which are conserved structures that regulate the establishment of oocyte polarity. Direct interaction between Spire and Cappuccino is required for oogenesis and for in vitro synergistic actin assembly. This synergy is proposed to be driven by elongation and the formation of a ternary complex at filament barbed ends, or by nucleation and interaction at filament pointed ends. To mimic the geometry of Spire and Cappuccino in vivo, we immobilized Spire on beads and added Cappuccino and actin. Barbed ends, protected by Cappuccino, grow away from the beads while pointed ends are retained, as expected for nucleation-driven synergy. We found that Spire is sufficient to bind barbed ends and retain pointed ends of actin filaments near beads and we identified Spire's barbed-end binding domain. Loss of barbed-end binding increases nucleation by Spire and synergy with Cappuccino in bulk pyrene assays and on beads. Importantly, genetic rescue by the loss-of-function mutant indicates that barbed-end binding is not necessary for oogenesis. Thus, increased nucleation is a critical element of synergy both in vitro and in vivo
- …