665 research outputs found

    Melatonin Alters Age-Related Changes in Transcription Factors and Kinase Activation

    Get PDF
    Male mice were fed 40 ppm melatonin for 2 months prior to sacrifice at age 26 months, and compared with both 26 and 4 month-old untreated controls. The nuclear translocation of NF-κB increased with age in both brain and spleen and this was reversed by melatonin only in brain. Another transcription factor, AP-1 was increased with age in the spleen and not in brain and this could be blocked by melatonin treatment. The fraction of the active relative to the inactive form of several enabling kinases was compared. The proportion of activated ERK was elevated with age in brain and spleen but this change was unresponsive to melatonin. A similar age-related increase in glial fibrillary acidic protein (GFAP) was also refractory to melatonin treatment. The cerebral melatonin M1 receptor decreased with age in brain but increased in spleen. The potentially beneficial nature of melatonin for the preservation of brain function with aging was suggested by the finding that an age-related decline in cortical synaptophysin levels was prevented by dietary melatonin

    EVALUATION OF GENE REGULATION AND THERAPEUTIC DRUGS RELATED TO ALZHEIMER’S DISEASE IN DEGENERATING PRIMARY CEREBROCORTICAL CULTURES

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Alzheimer’s disease (AD) is a neurological disorder defined by the presence of plaques comprised mostly of amyloid-β (Aβ), and neurofibrillary tangles consisting of hyperphosphorylated microtubule associated protein tau (MAPT). AD is also characterized by widespread synapse loss and degeneration followed by death of neurons in the brain. Inflammatory processes, such as glial activation, are also implicated. In order to study mechanisms of neurodegeneration and evaluate potential therapeutic agents that could slow or reverse this process, a tissue culture system was developed based on primary embryonic cerebrocortical neurons. This culture system was observed to exhibit time-dependent neurodegeneration, glial proliferation, and synaptic marker loss consistent with AD-affected brains. The regulatory promoter regions of several genes implicated in AD, including the Aβ precursor protein (APP), β-amyloid cleaving enzyme (BACE1), and MAPT, were studied in this culture model. The MAPT gene promoter activity followed the pattern of neuronal maturation and degeneration quite closely, increasing in the initial phase of the tissue culture, then reducing markedly during neurodegeneration while APP and BACE1 gene promoters remained active. Deletion series of these promoters were tested to give an initial indication of the active regions of the gene promoter regions. Furthermore, the effects of exogenous Aβ and overexpression of p25, which are two possible pathogenic mechanisms of gene regulation in AD, were studied. Response to Aβ varied between the promoters and by length of the Aβ fragment used. Overexpression of p25 increased MAPT, but not APP or BACE1, promoter activity. This neurodegeneration model was also used to study the putative neuroprotective action of the NMDA receptor antagonist memantine. Treatment with memantine prevented loss of synaptic markers and preserved neuronal morphology, while having no apparent effect on glial activation. The protective action on synaptic markers was also observed with two other structurally distinct NMDA receptor antagonists, suggesting that the effects of memantine are produced by its action on the NMDA receptor. It is concluded that this tissue culture model will be useful for the study of gene regulation and therapeutic agents for neurodegeneration, and that the efficacy of memantine may result from preservation of synaptic connections in the brain

    Trichostatin A Blocks Aldosterone-Induced Na+ Transport And Control Of Serum- And Glucocorticoid-Inducible Kinase 1 In Cortical Collecting Duct Cells

    Get PDF
    Background and Purpose: Aldosterone stimulates epithelial Na+ channel (ENaC)-dependent Na+ retention in the cortical collecting duct (CCD) of the kidney by activating mineralocorticoid receptors that promote expression of serum and glucocorticoid-inducible kinase 1 (SGK1). This response is critical to BP homeostasis. It has previously been suggested that inhibiting lysine deacetylases (KDACs) can post-transcriptionally disrupt this response by promoting acetylation of the mineralocorticoid receptor. The present study critically evaluates this hypothesis. Experimental Approach: Electrometric and molecular methods were used to define the effects of a pan-KDAC inhibitor, trichostatin A, on the responses to a physiologically relevant concentration of aldosterone (3 nM) in murine mCCDcl1 cells. Key Results: Aldosterone augmented ENaC-induced Na+ absorption and increased SGK1 activity and abundance, as expected. In the presence of trichostatin A, these responses were suppressed. Trichostatin A-induced inhibition of KDAC was confirmed by increased acetylation of histone H3, H4, and α-tubulin. Trichostatin A did not block the electrometric response to insulin, a hormone that activates SGK1 independently of increased transcription, indicating that trichostatin A has no direct effect upon the SGK1/ENaC pathway. Conclusions and Implications: Inhibition of lysine de-acetylation suppresses aldosterone-dependent control over the SGK1–ENaC pathway but does not perturb post-transcriptional signalling, providing a physiological basis for the anti-hypertensive action of KDAC inhibition seen in vivo

    Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma

    Get PDF
    Immunotherapy approaches for pancreatic ductal adenocarcinoma (PDAC) have met with limited success. It has been postulated that a low mutation load may lead to a paucity of T cells within the tumor microenvironment (TME). However, it is also possible that while neoantigens are present, an effective immune response cannot be generated due to an immune suppressive TME. To discern whether targetable neoantigens exist in PDAC, we performed a comprehensive study using genomic profiles of 221 PDAC cases extracted from public databases. Our findings reveal that: (a) nearly all PDAC samples harbor potentially targetable neoantigens; (b) T cells are present but generally show a reduced activation signature; and (c) markers of efficient antigen presentation are associated with a reduced signature of markers characterizing cytotoxic T cells. These findings suggest that despite the presence of tumor specific neoepitopes, T cell activation is actively suppressed in PDAC. Further, we identify iNOS as a potential mediator of immune suppression that might be actionable using pharmacological avenues

    Revised astrometric calibration of the Gemini Planet Imager

    Get PDF
    We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI data reduction pipeline (DRP) that significantly affected the determination of the angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry

    Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    Get PDF
    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbonbased nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials

    Investigation of Control System and Display Variations on Spacecraft Handling Qualities for Docking with Stationary and Rotating Targets

    Get PDF
    This paper documents the investigation into the manual docking of a preliminary version of the Crew Exploration Vehicle with stationary and rotating targets in Low Earth Orbit. The investigation was conducted at NASA Langley Research Center in the summer of 2008 in a repurposed fixed-base transport aircraft cockpit and involved nine evaluation astronauts and research pilots. The investigation quantified the benefits of a feed-forward reaction control system thruster mixing scheme to reduce translation-into-rotation coupling, despite unmodeled variations in individual thruster force levels and off-axis center of mass locations up to 12 inches. A reduced rate dead-band in the phase-plane attitude controller also showed some promise. Candidate predictive symbology overlaid on a docking ring centerline camera image did not improve handling qualities, but an innovative attitude status indicator symbol was beneficial. The investigation also showed high workload and handling quality problems when manual dockings were performed with a rotating target. These concerns indicate achieving satisfactory handling quality ratings with a vehicle configuration similar to the nominal Crew Exploration Vehicle may require additional automation

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area
    corecore