606 research outputs found

    Timing models for the long-orbital period binary pulsar PSR B1259-63

    Get PDF
    The pulsar PSR B1259-63 is in a highly eccentric 3.4-yr orbit with the Be star SS 2883. Timing observations of this pulsar, made over a 7-yr period using the Parkes 64-m radio telescope, cover two periastron passages, in 1990 August and 1994 January. The timing data cannot be fitted by the normal pulsar and Keplerian binary parameters. A timing solution including a (non-precessing) Keplerian orbit and timing noise (represented as a polynomial of fifth order in time) provide a satisfactory fit to the data. However, because the Be star probably has a significant quadrupole moment, we prefer to interpret the data by a combination of timing noise, dominated by a cubic phase term, and ω˙\dot\omega and x˙\dot x terms. We show that the ω˙\dot\omega and x˙\dot x are likely to be a result of a precessing orbit caused by the quadrupole moment of the tilted companion star. We further rule out a number of possible physical effects which could contribute to the timing data of PSR B1259-63 on a measurable level.Comment: LaTeX, 9 pages, 8 figures, accepted for publication in MNRA

    The ASCA Spectrum of the Vela Pulsar Jet

    Get PDF
    ROSAT observations of the Vela pulsar and its surroundings revealed a collimated X-ray feature almost 45' in length (Markwardt & Ogelman 1995), interpreted as the signature ``cocoon'' of a one-sided jet from the Vela pulsar. We report on a new ASCA observation of the Vela pulsar jet at its head, the point where the jet is believed to interact with the supernova remnant. The head is clearly detected, and its X-ray spectrum is remarkably similar to the surrounding supernova remnant spectrum, extending to X-ray energies of at least 7 keV. A ROSAT+ASCA spectrum can be fit by two-component emission models but not standard one-component models. The lower energy component is thermal and has a temperature of 0.29+/-0.03 keV (1 sigma); the higher energy component can be fit by either a thermal component of temperature ~4 keV or a power law with photon index ~2.0. Compared to the ROSAT-only results, the mechanical properties of the jet and its cocoon do not change much. If the observed spectrum is that of a hot jet cocoon, then the speed of the jet is at least 800 km s^-1, depending on the angle of inclination. The mechanical power driving the jet is >10^36 erg s^-1, and the mass flow rate at the head is > 10^-6 M_sun yr^-1. We conclude that the jet must be entraining material all along its length in order to generate such a large mass flow rate. We also explore the possibility that the cocoon emission is synchrotron radiation instead of thermal.Comment: 12 pages, LaTeX in AAS v4.0 preprint style, two PS figures, accepted for publication in the ApJ Letter

    Adaptive Filters Revisited - RFI Mitigation in pulsar observations

    Full text link
    Pulsar detection and timing experiments are applications where adaptive filters seem eminently suitable tools for radio-frequency-interference (RFI) mitigation. We describe a novel variant which works well in field trials of pulsar observations centred on an observing frequency of 675 MHz, a bandwidth of 64 MHz and with 2-bit sampling. Adaptive filters have generally received bad press for RFI mitigation in radio astronomical observations with their most serious drawback being a spectral echo of the RFI embedded in the filtered signals. Pulsar observations are intrinsically less sensitive to this as they operate in the (pulsar period) time domain. The field trials have allowed us to identify those issues which limit the effectiveness of the adaptive filter. We conclude that adaptive filters can significantly improve pulsar observations in the presence of RFI.Comment: Accepted for publication in Radio Scienc

    Glitches in Southern Pulsars

    Get PDF
    Timing observations of 40 mostly young pulsars using the ATNF Parkes radio telescope between 1990 January and 1998 December are reported. In total, 20 previously unreported glitches and ten other glitches were detected in 11 pulsars. These included 12 glitches in PSR J1341- 6220, corresponding to a glitch rate of 1.5 glitches per year. We also detected the largest known glitch, in PSR J1614-5047, with Δνg/ν6.5×106\Delta\nu_g/\nu \approx 6.5 \times 10^{-6} where ν=1/P\nu = 1/P is the pulse frequency. Glitch parameters were determined both by extrapolating timing solutions to inter-glitch intervals and by phase-coherent timing fits across the glitch(es). Analysis of glitch parameters, both from this work and from previously published results, shows that most glitches have a fractional amplitude Δνg/ν\Delta\nu_g/\nu of between 10810^{-8} and 10610^{-6}. There is no consistent relationship between glitch amplitude and the time since the previous glitch or the time to the following glitch, either for the ensemble or for individual pulsars. As previously recognised, the largest glitch activity is seen in pulsars with ages of order 104^4 years, but for about 30 per cent of such pulsars, no glitches were detected in the 8-year data span. There is some evidence for a new type of timing irregularity in which there is a significant increase in pulse frequency over a few days, accompanied by a decrease in the magnitude of the slowdown rate. Fits of an exponential recovery to post-glitch data show that for most older pulsars, only a small fraction of the glitch decays. In some younger pulsars, a large fraction of the glitch decays, but in others, there is very little decay.Comment: 19 pages, 20 figures. Accepted for publication in MNRA

    Contribution of pulsars to the gamma-ray background and their observation with the space telescopes GLAST and AGILE

    Full text link
    Luminosities and uxes of the expected population of galactic gamma-ray pulsars become foreseeable if physical distributions at birth and evolutive history are assigned. In this work we estimate the contribution of pulsar uxes to the gamma-ray background, which has been measured by the EGRET experiment on board of the CGRO. For pulsar luminosities we select some of the most important gamma-ray emission models, taking into account both polar cap and outer gap scenarios. We nd that this contribution strongly depends upon controversial neutron star birth properties. A comparison between our simulation results and EGRET data is presented for each model, nding an average contribution of about 10%. In addition, we perform the calculation of the number of new gamma-ray pulsars detectable by GLAST and AGILE, showing a remarkable di erence between the two classes of models. Finally, we suggest some improvements in the numerical code, including more sophisticated galactic m odels and di erent populations of pulsars like binaries, milliseconds, anomalous pulsars and magnetars.Comment: 6 pages, 6 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200

    PSR J1909-3744, a Binary Millisecond Pulsar with a Very Small Duty Cycle

    Full text link
    We report the discovery of PSR J1909-3744, a 2.95 millisecond pulsar in a nearly circular 1.53 day orbit. Its narrow pulse width of 43 microseconds allows pulse arrival times to be determined with great accuracy. We have spectroscopically identified the companion as a moderately hot (T = 8500 K) white dwarf with strong absorption lines. Radial velocity measurements of the companion will yield the mass ratio of the system. Our timing data suggest the presence of Shapiro delay; we expect that further timing observations, combined with the mass ratio, will allow the first accurate determination of a millisecond pulsar mass. We have measured the timing parallax and proper motion for this pulsar which indicate a transverse velocity of 140 (+80/-40) km/s. This pulsar's stunningly narrow pulse profile makes it an excellent candidate for precision timing experiments that attempt to detect low frequency gravitational waves from coalescing supermassive black hole binaries.Comment: 12 pages, 4 figures. Accepted for publication in ApJ

    Millisecond Pulsar Velocities

    Get PDF
    We present improved timing parameters for 13 millisecond pulsars (MSPs) including 9 new proper motion measurements. These new proper motions bring to 23 the number of MSPs with measured transverse velocities. In light of these new results we present and compare the kinematic properties of MSPs with those of ordinary pulsars. The mean transverse velocity of MSPs was found to be 85+/-13 km/s; a value consistent with most models for the origin and evolution of MSPs and approximately a factor of four lower than that of ordinary pulsars. We also find that, in contrast to young ordinary pulsars, the vast majority of which are moving away from the Galactic plane, almost half of the MSPs are moving towards the plane. This near isotropy would be expected of a population that has reached dynamic equilibrium. Accurate measurements of MSP velocities have allowed us to correct their measured spin-down rates for Doppler acceleration effects, and thereby derive their intrinsic magnetic field strengths and characteristic ages. We find that close to half of our sample of MSPs have a characteristic age comparable to or greater than the age of the Galaxy.Comment: 10 pages LaTeX including 2 LaTeX tables and 3 postscript figures; submitted to MNRA

    Discovery of an optical bow-shock around pulsar B0740-28

    Get PDF
    We report the discovery of a faint H-alpha pulsar wind nebula (PWN) powered by the radio pulsar B0740-28. The characteristic bow-shock morphology of the PWN implies a direction of motion consistent with the previously measured velocity vector for the pulsar. The PWN has a flux density more than an order of magnitude lower than for the PWNe seen around other pulsars, but, for a distance 2 kpc, it is consistent with propagation through a medium of atomic density n_H ~ 0.25 cm^{-3}, and neutral fraction of 1%. The morphology of the PWN in the area close to the pulsar is distinct from that in downstream regions, as is also seen for the PWN powered by PSR B2224+65. In particular, the PWN associated with PSR B0740-28 appears to close at its rear, suggesting that the pulsar has recently passed through a transition from low density to high density ambient gas. The faintness of this source underscores that deep searches are needed to find further examples of optical pulsar nebulae.Comment: 5 pages, 1 figure, to appear in Astronomy & Astrophysics Letter

    Multimessenger Universe with Gravitational Waves from Binaries

    Get PDF
    Future GW detector networks and EM observatories will provide a unique opportunity to observe the most luminous events in the Universe involving matter in extreme environs. They will address some of the key questions in physics and astronomy: formation and evolution of compact binaries, sites of formation of heavy elements and the physics of jets.Comment: 11 pages, two tables, White Paper submitted to the Astro-2020 (2020 Astronomy and Astrophysics Decadal Survey) by GWIC-3G Science Case Team (GWIC: Gravitational-Wave International Committee

    Accelerating incoherent dedispersion

    Full text link
    Incoherent dedispersion is a computationally intensive problem that appears frequently in pulsar and transient astronomy. For current and future transient pipelines, dedispersion can dominate the total execution time, meaning its computational speed acts as a constraint on the quality and quantity of science results. It is thus critical that the algorithm be able to take advantage of trends in commodity computing hardware. With this goal in mind, we present analysis of the 'direct', 'tree' and 'sub-band' dedispersion algorithms with respect to their potential for efficient execution on modern graphics processing units (GPUs). We find all three to be excellent candidates, and proceed to describe implementations in C for CUDA using insight gained from the analysis. Using recent CPU and GPU hardware, the transition to the GPU provides a speed-up of 9x for the direct algorithm when compared to an optimised quad-core CPU code. For realistic recent survey parameters, these speeds are high enough that further optimisation is unnecessary to achieve real-time processing. Where further speed-ups are desirable, we find that the tree and sub-band algorithms are able to provide 3-7x better performance at the cost of certain smearing, memory consumption and development time trade-offs. We finish with a discussion of the implications of these results for future transient surveys. Our GPU dedispersion code is publicly available as a C library at: http://dedisp.googlecode.com/Comment: 15 pages, 4 figures, 2 tables, accepted for publication in MNRA
    corecore