1,591 research outputs found
Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition
The one-dimensional totally asymmetric simple exclusion process (TASEP) is
considered. We study the time evolution property of a tagged particle in TASEP
with the step-type initial condition. Calculated is the multi-time joint
distribution function of its position. Using the relation of the dynamics of
TASEP to the Schur process, we show that the function is represented as the
Fredholm determinant. We also study the scaling limit. The universality of the
largest eigenvalue in the random matrix theory is realized in the limit. When
the hopping rates of all particles are the same, it is found that the joint
distribution function converges to that of the Airy process after the time at
which the particle begins to move. On the other hand, when there are several
particles with small hopping rate in front of a tagged particle, the limiting
process changes at a certain time from the Airy process to the process of the
largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure
Genetic Classification of Populations using Supervised Learning
There are many instances in genetics in which we wish to determine whether
two candidate populations are distinguishable on the basis of their genetic
structure. Examples include populations which are geographically separated,
case--control studies and quality control (when participants in a study have
been genotyped at different laboratories). This latter application is of
particular importance in the era of large scale genome wide association
studies, when collections of individuals genotyped at different locations are
being merged to provide increased power. The traditional method for detecting
structure within a population is some form of exploratory technique such as
principal components analysis. Such methods, which do not utilise our prior
knowledge of the membership of the candidate populations. are termed
\emph{unsupervised}. Supervised methods, on the other hand are able to utilise
this prior knowledge when it is available.
In this paper we demonstrate that in such cases modern supervised approaches
are a more appropriate tool for detecting genetic differences between
populations. We apply two such methods, (neural networks and support vector
machines) to the classification of three populations (two from Scotland and one
from Bulgaria). The sensitivity exhibited by both these methods is considerably
higher than that attained by principal components analysis and in fact
comfortably exceeds a recently conjectured theoretical limit on the sensitivity
of unsupervised methods. In particular, our methods can distinguish between the
two Scottish populations, where principal components analysis cannot. We
suggest, on the basis of our results that a supervised learning approach should
be the method of choice when classifying individuals into pre-defined
populations, particularly in quality control for large scale genome wide
association studies.Comment: Accepted PLOS On
Expected length of the longest common subsequence for large alphabets
We consider the length L of the longest common subsequence of two randomly
uniformly and independently chosen n character words over a k-ary alphabet.
Subadditivity arguments yield that the expected value of L, when normalized by
n, converges to a constant C_k. We prove a conjecture of Sankoff and Mainville
from the early 80's claiming that C_k\sqrt{k} goes to 2 as k goes to infinity.Comment: 14 pages, 1 figure, LaTe
Growth models, random matrices and Painleve transcendents
The Hammersley process relates to the statistical properties of the maximum
length of all up/right paths connecting random points of a given density in the
unit square from (0,0) to (1,1). This process can also be interpreted in terms
of the height of the polynuclear growth model, or the length of the longest
increasing subsequence in a random permutation. The cumulative distribution of
the longest path length can be written in terms of an average over the unitary
group. Versions of the Hammersley process in which the points are constrained
to have certain symmetries of the square allow similar formulas. The derivation
of these formulas is reviewed. Generalizing the original model to have point
sources along two boundaries of the square, and appropriately scaling the
parameters gives a model in the KPZ universality class. Following works of Baik
and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled
cumulative distribution, in which a particular Painlev\'e II transcendent plays
a prominent role.Comment: 27 pages, 5 figure
Universal Distributions for Growth Processes in 1+1 Dimensions and Random Matrices
We develop a scaling theory for KPZ growth in one dimension by a detailed
study of the polynuclear growth (PNG) model. In particular, we identify three
universal distributions for shape fluctuations and their dependence on the
macroscopic shape. These distribution functions are computed using the
partition function of Gaussian random matrices in a cosine potential.Comment: 4 pages, 3 figures, 1 table, RevTeX, revised version, accepted for
publication in PR
Replica field theories, Painleve transcendents, and exact correlation functions
Exact solvability is claimed for nonlinear replica sigma models derived in
the context of random matrix theories. Contrary to other approaches reported in
the literature, the framework outlined does not rely on traditional "replica
symmetry breaking" but rests on a previously unnoticed exact relation between
replica partition functions and Painleve transcendents. While expected to be
applicable to matrix models of arbitrary symmetries, the method is used to
treat fermionic replicas for the Gaussian unitary ensemble (GUE), chiral GUE
(symmetry classes A and AIII in Cartan classification) and Ginibre's ensemble
of complex non-Hermitean random matrices. Further applications are briefly
discussed.Comment: published version, 4 pages, revtex
Intrauterine exposures, pregnancy estrogens and breast cancer risk: where do we currently stand?
Since 1990, when a hypothesis on intrauterine influences on breast cancer risk was published, several studies have provided supportive, indirect evidence by documenting associations of birth weight and other correlates of the prenatal environment with breast cancer risk in offspring. Recent results from a unique cohort of women with documented exposure to diethylstilbestrol in utero have provided direct evidence in support of a potential role of pregnancy oestrogens on breast cancer risk in offspring
A pedestrian's view on interacting particle systems, KPZ universality, and random matrices
These notes are based on lectures delivered by the authors at a Langeoog
seminar of SFB/TR12 "Symmetries and universality in mesoscopic systems" to a
mixed audience of mathematicians and theoretical physicists. After a brief
outline of the basic physical concepts of equilibrium and nonequilibrium
states, the one-dimensional simple exclusion process is introduced as a
paradigmatic nonequilibrium interacting particle system. The stationary measure
on the ring is derived and the idea of the hydrodynamic limit is sketched. We
then introduce the phenomenological Kardar-Parisi-Zhang (KPZ) equation and
explain the associated universality conjecture for surface fluctuations in
growth models. This is followed by a detailed exposition of a seminal paper of
Johansson that relates the current fluctuations of the totally asymmetric
simple exclusion process (TASEP) to the Tracy-Widom distribution of random
matrix theory. The implications of this result are discussed within the
framework of the KPZ conjecture.Comment: 52 pages, 4 figures; to appear in J. Phys. A: Math. Theo
- âŠ