68 research outputs found

    Prevention of febrile neutropenia: use of prophylactic antibiotics

    Get PDF
    Febrile neutropenia (FN) causes significant morbidity and mortality in patients receiving cytotoxic chemotherapy and can lead to reduced chemotherapy dose intensity and increased overall treatment costs. Antibiotic prophylaxis reduces the incidence of FN. Recent research and meta-analyses confirm that prophylactic fluoroquinolones decrease FN and infection-related mortality in patients with acute leukaemia and those receiving high-dose chemotherapy. Fluoroquinolone prophylaxis also lowers the incidence of FN and all-cause mortality following the first cycle of myelosuppressive chemotherapy for solid tumours. Levofloxacin has been the agent studied most thoroughly in this context. Although there is no convincing evidence that colonisation of individuals with resistant organisms due to antibiotic prophylaxis increases FN or mortality, such concerns must be taken seriously and the use of prophylaxis should be limited responsibly for patients with the greatest chance of benefit. Fluoroquinolone prophylaxis is well tolerated and cost-effective and should be offered to patients receiving chemotherapy for haematological malignancies and high-dose chemotherapy for solid tumours in which prolonged (>7 days) neutropenia is expected. It should also be considered for those receiving chemotherapy for solid tumours and lymphomas during the first cycle of chemotherapy when grade 4 neutropenia is anticipated

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Leukaemic deposits in the orbit

    No full text
    • 

    corecore