51 research outputs found

    Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing

    Get PDF
    Objective This study aimed to elucidate the underlying gene regions responsible for productive, phenotypic or adaptive traits in different ecological types of Tibetan sheep and the discovery of important genes encoding valuable traits. Methods We used whole-genome resequencing to explore the genetic relationships, phylogenetic tree, and population genetic structure analysis. In addition, we identified 28 representative Tibetan sheep single-nucleotide polymorphisms (SNPs) and genomic selective sweep regions with different traits in Tibetan sheep by fixation index (Fst) and the nucleotide diversity (θπ) ratio. Results The genetic relationships analysis showed that each breed partitioned into its own clades and had close genetic relationships. We also identified many potential breed-specific selective sweep regions, including genes associated with hypoxic adaptability (MTOR, TRHDE, PDK1, PTPN9, TMTC2, SOX9, EPAS1, PDGFD, SOCS3, TGFBR3), coat color (MITF, MC1R, ERCC2, TCF25, ITCH, TYR, RALY, KIT), wool traits (COL4A2, ERC2, NOTCH2, ROCK1, FGF5, SOX9), and horn phenotypes (RXFP2). In particular, a horn-related gene, RXFP2, showed the four most significantly associated SNP loci (g. 29481646 A>G, g. 29469024 T>C, g. 29462010 C>T, g. 29461968 C>T) and haplotypes. Conclusion This finding demonstrates the potential for genetic markers in future molecular breeding programs to improve selection for horn phenotypes. The results will facilitate the understanding of the genetic basis of production and adaptive unique traits in Chinese indigenous Tibetan sheep taxa and offer a reference for the molecular breeding of Tibetan sheep

    A novel porcine reproductive and respiratory syndrome virus vector system that stably expresses enhanced green fluorescent protein as a separate transcription unit

    Get PDF
    Abstract Here we report the rescue of a recombinant porcine reproductive and respiratory syndrome virus (PRRSV) carrying an enhanced green fluorescent protein (EGFP) reporter gene as a separate transcription unit. A copy of the transcription regulatory sequence for ORF6 (TRS6) was inserted between the N protein and 3′-UTR to drive the transcription of the EGFP gene and yield a general purpose expression vector. Successful recovery of PRRSV was obtained using an RNA polymerase II promoter to drive transcription of the full-length virus genome, which was assembled in a bacterial artificial chromosome (BAC). The recombinant virus showed growth replication characteristics similar to those of the wild-type virus in the infected cells. In addition, the recombinant virus stably expressed EGFP for at least 10 passages. EGFP expression was detected at approximately 10 h post infection by live-cell imaging to follow the virus spread in real time and the infection of neighbouring cells occurred predominantly through cell-to-cell-contact. Finally, the recombinant virus generated was found to be an excellent tool for neutralising antibodies and antiviral compound screening. The newly established reverse genetics system for PRRSV could be a useful tool not only to monitor virus spread and screen for neutralising antibodies and antiviral compounds, but also for fundamental research on the biology of the virus.This study was funded by grants from the National Natural Science Foundation of China (U0931003/L01) and the National High-Tech R&D Program of China (2011AA10A208) to EMZ, the National Natural Science Foundation of China (31302103) to WCB, the European Community’s Seventh Frame-work Programme (PoRRSCon, FP7-KBBE-2009-3-245141) and the Ministry of Science and Innovation of Spain (MCINN) (BIO2010-16075) to FA and LE.Peer Reviewe

    MYH9 is an Essential Factor for Porcine Reproductive and Respiratory Syndrome Virus Infection

    Get PDF
    Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is an important swine disease worldwide. PRRSV has a limited tropism for certain cells, which may at least in part be attributed to the expression of the necessary cellular molecules serving as the virus receptors or factors on host cells for virus binding or entry. However, these molecules conferring PRRSV infection have not been fully characterized. Here we show the identification of non-muscle myosin heavy chain 9 (MYH9) as an essential factor for PRRSV infection using the anti-idiotypic antibody specific to the PRRSV glycoprotein GP5. MYH9 physically interacts with the PRRSV GP5 protein via its C-terminal domain and confers susceptibility of cells to PRRSV infection. These findings indicate that MYH9 is an essential factor for PRRSV infection and provide new insights into PRRSV-host interactions and viral entry, potentially facilitating development of control strategies for this important swine disease

    Chicken Organic Anion-Transporting Polypeptide 1A2, a Novel Avian Hepatitis E Virus (HEV) ORF2-Interacting Protein, Is Involved in Avian HEV Infection

    Get PDF
    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease in chickens. Due to the absence of a highly effective cell culture system, there are few reports about the interaction between avian HEV and host cells. In this study, organic anion-transporting polypeptide 1A2 (OATP1A2) from chicken liver cells was identified to interact with ap237, a truncated avian HEV capsid protein spanning amino acids 313 to 549, by a glutathione S-transferase (GST) pulldown assay. GST pulldown and indirect enzyme-linked immunosorbent assays (ELISAs) further confirmed that the extracellular domain of OATP1A2 directly binds with ap237. The expression levels of OATP1A2 in host cells are positively correlated with the amounts of ap237 attachment and virus infection. The distribution of OATP1A2 in different tissues is consistent with avian HEV infection in vivo. Finally, when the functions of OATP1A2 in cells are inhibited by its substrates or an inhibitor or blocked by ap237 or anti-OATP1A2 sera, attachment to and infection of host cells by avian HEV are significantly reduced. Collectively, these results displayed for the first time that OATP1A2 interacts with the avian HEV capsid protein and can influence viral infection in host cells. The present study provides new insight to understand the process of avian HEV infection of host cells

    Differential Expression of Rubisco in Sporophytes and Gametophytes of Some Marine Macroalgae

    Get PDF
    Rubisco (ribulose-1, 5-bisphosphate carboxylase/oxygenase), a key enzyme of photosynthetic CO2 fixation, is one of the most abundant proteins in both higher plants and algae. In this study, the differential expression of Rubisco in sporophytes and gametophytes of four seaweed species — Porphyra yezoensis, P. haitanensis, Bangia fuscopurpurea (Rhodophyte) and Laminaria japonica (Phaeophyceae) — was studied in terms of the levels of transcription, translation and enzyme activity. Results indicated that both the Rubisco content and the initial carboxylase activity were notably higher in algal gametophytes than in the sporophytes, which suggested that the Rubisco content and the initial carboxylase activity were related to the ploidy of the generations of the four algal species

    Spatial Risk Assessment of the Effects of Obstacle Factors on Areas at High Risk of Geological Disasters in the Hengduan Mountains, China

    No full text
    The Hengduan Mountains in China are known for their complex geological environment, which leads to frequent geological disasters that pose significant threats to the safety and economic and social development of the local population. In this study, we developed develop a multi-dimensional evaluation index system from the aspects of economy, society, ecology, and infrastructure, and the resilience inference measurement (RIM) model was developed to assess resilience to regional disasters. The clustering evaluation of exposure, damage, and recovery variables in four states was conducted by way of K-means clustering. The results of K-means clustering are confirmed by discriminant analysis, and the disaster resilience index was empirically verified once. At the same time, the obstacle factor was further analyzed with the obstacle degree model. The results indicate that there are 8 susceptible areas, 23 recovering areas, 27 resistant areas, and 7 usurper areas. The classification accuracy of the model is 95.4%. The disaster resilience of high-risk areas was found to be low, with “extremely poor” differentiation, where the majority of the areas had low resilience and only a minority had high resilience. A “high in the southeast and low in the northwest” spatial distribution was observed. High-resilience areas were “dotted” and mainly concentrated in core areas with a high population density and strong economic activity, while low-resilience areas had a pattern of “edge extension” and were mainly distributed in the transition zone between the Qinghai–Tibet and Yunnan Plateaus. There were clear differences in the barriers of disaster resilience among the 65 counties (cities). The economic barrier degree was found to be the largest barrier to disaster resilience, followed by ecological, social, and infrastructure barrier degrees. The main factors affecting the distribution of disaster resilience in the high-risk areas were topographic relief, proportion of female population, cultivated land area, industrial structure, number of industrial enterprises above a designated size, and drainage pipeline density in the built-up area. Additionally, primary barrier factors classify the 65 counties (cities) into three types: economic constraint, natural environment constraint, and population structure constraint

    粉末床熔融的多材料铺粉过程中粉末扩散的数值研究

    No full text
    Powder bed fusion additive manufacturing has been applied to the fabrication of functionally graded materials. A new design that allows the material composition to change along the direction perpendicular to the powder spreading has been reported in the literature. Based on this design, this work examines the quality of the graded spread powder layer with two powders, which have a large difference of density. The results reveal that during the spreading of graded powders, the volume of particles on the heavy powder side is deposited less than that on the light powder side, indicating that heavy particles diffuse to the light powder side. This diffusion is affected by the spreading speed, but not much by the layer gap. Large spreading speed causes more significant deviation. The results also show that particle size affects diffusion, indicating that decreasing the particle size of the heavy powder may be a solution to reduce diffusion. [Figure not available: see fulltext.]Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Resources & Recyclin

    Visualization 1.mp4

    No full text
    Visualization 1 shows the dynamic change of the PA vascular images during the process of the contact force changing from small to large and back again. The light source is fix, and the distance between the blood vessel and the light source remained almost unchanged during the imgaing. The probe pressed down on the ultrasound coupling pad placed on the skin

    Toughening of polyamide 11 with carbon nanotubes for additive manufacturing

    No full text
    It has been reported that the addition of nanofillers/nanoparticles into the thermoplastic polymers could enhance the toughness of the polymer matrix. In this work, the mechanical and thermal properties of a multi-walled carbon nanotubes (CNT)/polyamide 11 nanocomposite for additive manufacturing was evaluated. Well-dispersed PA11/CNT nanocomposite powders were processed successfully by laser sintering. Compared to the pristine PA11, the fracture toughness of the PA11/CNT nanocomposite was enhanced by ∼54% by incorporating of only 0.2 wt% CNTs. With differential scanning calorimetry, X-ray diffraction and scanning electron microscope fractography analysis, the nanostructure and the toughening mechanism which lead to the toughness improvement was well identified and understood
    corecore