94 research outputs found

    Fusion sélective par laser - influence de l'atmosphère et réalisation d'alliage in situ

    Get PDF
    Au cours de la dernière décennie, le procédé de fabrication additive par fusion sélective d'un lit de poudre SLM a attiré une grande attention dans le domaine de l'industrie, car il permet de produire rapidement des pièces de formes complexes. Le but de ce travail est d'étendre les performances des procédés SLM en étudiant la possibilité d'élaborer des pièces en atmosphère raréfiée. Pour atteindre cet objectif, une approche théorique et expérimentale a été développée, avec la mise en place d'une machine de fusion sélective par laser capable de travailler dans le domaine de pression de 1 à 10-2 mbar.Le travail sous vide permet d'éviter la formation du "bouclier" de plasma généré à partir de l'atmosphère de gaz ionisé par l'énergie du laser. Ceci permet d'une part d'éviter la contamination chimique du matériau (oxydation, nitruration,...) au cours des processus de fusion et d'autre part de réduire le taux de porosité. L'effet des paramètres du laser et des variables d'environnement sur la qualité de pièces a été étudié en considérant le cas du fer pur, de l'acier Inox 316L et du titane.Par ailleurs nous avons étudié la possibilité d'obtenir des alliages in-situ au cours de la fabrication par la technique SLM à partir de mélanges de poudres.Des essais ont été conduits à partir de mélanges Mg/Al, Fe/Ni et Ti/Ni. Dans tous les cas nous avons pu obtenir des alliages in-situ pour les domaines de composition visés qui correspondent à des applications pratiques (structures légères, alliage magnétique à faible coercivité, alliage à mémoire de forme). Les propriétés des matériaux obtenus, d'après les premières caractérisations effectuées, se comparent de façon favorable par rapport aux techniques classiques d'élaboration et de mise en œuvre.During the last decade, selective laser melting attracted attention in industry because it could allow producing parts with complex shapes rapidly and accurately. The aim of this work is to obtain parts with desired properties by SLM technology. To achieve this point, a theoretical and experimental approach was developed concerning a new process which carries out the selective laser melting process at pressures in the range 1 to 1.10-2 mbar.Vacuum operating under allows avoiding the plasma shield generated from the gas atmosphere ionized by the high laser energy, which on the one hand avoids the chemical contamination (oxidizing, nitriding ) during the melting process and on the other hand reduces the porosity rate. The effect of laser parameters and environment variables on the quality of parts was studied by considering the case of pure iron, stainless steel 316L and titanium.Moreover, we studied the possibility of obtaining in-situ alloys during the SLM manufacturing technique from mixtures of powders.Tests were conducted from mixtures Mg/Al, Fe/Ni and Ti/Ni. In all cases we were able to obtain in-situ alloys for areas covered composition corresponding to practical applications (lightweight structures, low coercivity magnetic alloy, shape memory alloy). The properties of material obtained from the characterizations performed, which are comparable with the conventional development and implementation.BELFORT-UTBM-SEVENANS (900942101) / SudocSudocFranceF

    Finite Element Modelling Of Tensile Test For Micro-Alloyed Low Carbon Steel At High Temperature

    No full text
    International audienceIn view of the numerical inverse identification of constitutive models, a forward numerical modelling of Gleeble tension tests is conducted. A coupled electrical--thermal--mechanical model is proposed for the resolution of electrical, energy and momentum conservation equations by means of finite element method. In momentum equation, the mixed rheological model in multi--phase region (e.g. δ--ferrite and γ austenite (δ+γ mixture)) is developed to consider the δ/γ phase transformation phenomenon for micro--alloyed low carbon steel at high temperature. Experimental and numerical results reveal that significant thermal gradients exist in specimen along longitudinal and radial directions. Such thermal gradients will lead to phase fraction gradient in specimen at high temperature, such as δ fraction gradient or liquid fraction gradient. All these gradients will contribute to the heterogeneous deformation of specimen and severe stress non--uniform distribution, which is the major difficulty for the identification of constitutive models, especially for the simple identification method based on nominal stress--strain. The proposed model can be viewed as an important achievement for further inverse identification methods, which should be used to identify constitutive parameters for steel at high temperature in the presence of thermal gradients

    Inverse finite element modelling and identification of constitutive parameters of UHS steel based on Gleeble tensile tests at high temperature

    No full text
    The authors are grateful to the publisher, Taylor & Francis, for letting the manuscript being archived in this Open Access repository. This is an electronic version of an article that was published in Inverse Problems in Science and Engineering© 2011 Copyright: Taylor & Francis. Inverse Problems in Science and Engineering is available online at: http://www.tandfonline.com/doi/abs/10.1080/17415977.2010.518288International audienceThe rheological behaviour of an ultra high strength (UHS) steel is investigated by Gleeble tensile tests at low-deformation rates and high temperature, from 1200°C to solidus temperature. Results show that large thermal gradients exist in specimens, resulting in heterogeneous deformation, which makes the identification of constitutive parameters difficult from the directly deduced nominal stress-strain curves. The advantages of an inverse identification method - associating a direct finite element model of Gleeble tests and an optimization module - are demonstrated in such conditions. The constitutive parameters identified by this technique have been successfully applied to additional tests, more complex in nature than those used for the identification of parameters. However, such tests combining successive loading and relaxation stages have revealed some limitations of the considered constitutive model

    Stencil Computation with Vector Outer Product

    Full text link
    Matrix computation units have been equipped in current architectures to accelerate AI and high performance computing applications. The matrix multiplication and vector outer product are two basic instruction types. The latter one is lighter since the inputs are vectors. Thus it provides more opportunities to develop flexible algorithms for problems other than dense linear algebra computing and more possibilities to optimize the implementation. Stencil computations represent a common class of nested loops in scientific and engineering applications. This paper proposes a novel stencil algorithm using vector outer products. Unlike previous work, the new algorithm arises from the stencil definition in the scatter mode and is initially expressed with formulas of vector outer products. The implementation incorporates a set of optimizations to improve the memory reference pattern, execution pipeline and data reuse by considering various algorithmic options and the data sharing between input vectors. Evaluation on a simulator shows that our design achieves a substantial speedup compared with vectorized stencil algorithm

    MYH9 is an Essential Factor for Porcine Reproductive and Respiratory Syndrome Virus Infection

    Get PDF
    Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is an important swine disease worldwide. PRRSV has a limited tropism for certain cells, which may at least in part be attributed to the expression of the necessary cellular molecules serving as the virus receptors or factors on host cells for virus binding or entry. However, these molecules conferring PRRSV infection have not been fully characterized. Here we show the identification of non-muscle myosin heavy chain 9 (MYH9) as an essential factor for PRRSV infection using the anti-idiotypic antibody specific to the PRRSV glycoprotein GP5. MYH9 physically interacts with the PRRSV GP5 protein via its C-terminal domain and confers susceptibility of cells to PRRSV infection. These findings indicate that MYH9 is an essential factor for PRRSV infection and provide new insights into PRRSV-host interactions and viral entry, potentially facilitating development of control strategies for this important swine disease

    Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing

    Get PDF
    Objective This study aimed to elucidate the underlying gene regions responsible for productive, phenotypic or adaptive traits in different ecological types of Tibetan sheep and the discovery of important genes encoding valuable traits. Methods We used whole-genome resequencing to explore the genetic relationships, phylogenetic tree, and population genetic structure analysis. In addition, we identified 28 representative Tibetan sheep single-nucleotide polymorphisms (SNPs) and genomic selective sweep regions with different traits in Tibetan sheep by fixation index (Fst) and the nucleotide diversity (θπ) ratio. Results The genetic relationships analysis showed that each breed partitioned into its own clades and had close genetic relationships. We also identified many potential breed-specific selective sweep regions, including genes associated with hypoxic adaptability (MTOR, TRHDE, PDK1, PTPN9, TMTC2, SOX9, EPAS1, PDGFD, SOCS3, TGFBR3), coat color (MITF, MC1R, ERCC2, TCF25, ITCH, TYR, RALY, KIT), wool traits (COL4A2, ERC2, NOTCH2, ROCK1, FGF5, SOX9), and horn phenotypes (RXFP2). In particular, a horn-related gene, RXFP2, showed the four most significantly associated SNP loci (g. 29481646 A>G, g. 29469024 T>C, g. 29462010 C>T, g. 29461968 C>T) and haplotypes. Conclusion This finding demonstrates the potential for genetic markers in future molecular breeding programs to improve selection for horn phenotypes. The results will facilitate the understanding of the genetic basis of production and adaptive unique traits in Chinese indigenous Tibetan sheep taxa and offer a reference for the molecular breeding of Tibetan sheep

    A novel porcine reproductive and respiratory syndrome virus vector system that stably expresses enhanced green fluorescent protein as a separate transcription unit

    Get PDF
    Abstract Here we report the rescue of a recombinant porcine reproductive and respiratory syndrome virus (PRRSV) carrying an enhanced green fluorescent protein (EGFP) reporter gene as a separate transcription unit. A copy of the transcription regulatory sequence for ORF6 (TRS6) was inserted between the N protein and 3′-UTR to drive the transcription of the EGFP gene and yield a general purpose expression vector. Successful recovery of PRRSV was obtained using an RNA polymerase II promoter to drive transcription of the full-length virus genome, which was assembled in a bacterial artificial chromosome (BAC). The recombinant virus showed growth replication characteristics similar to those of the wild-type virus in the infected cells. In addition, the recombinant virus stably expressed EGFP for at least 10 passages. EGFP expression was detected at approximately 10 h post infection by live-cell imaging to follow the virus spread in real time and the infection of neighbouring cells occurred predominantly through cell-to-cell-contact. Finally, the recombinant virus generated was found to be an excellent tool for neutralising antibodies and antiviral compound screening. The newly established reverse genetics system for PRRSV could be a useful tool not only to monitor virus spread and screen for neutralising antibodies and antiviral compounds, but also for fundamental research on the biology of the virus.This study was funded by grants from the National Natural Science Foundation of China (U0931003/L01) and the National High-Tech R&D Program of China (2011AA10A208) to EMZ, the National Natural Science Foundation of China (31302103) to WCB, the European Community’s Seventh Frame-work Programme (PoRRSCon, FP7-KBBE-2009-3-245141) and the Ministry of Science and Innovation of Spain (MCINN) (BIO2010-16075) to FA and LE.Peer Reviewe

    A Coupled Electrical-Thermal-Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature

    No full text
    International audienceA coupled electrical-thermal-mechanical model is proposed aimed at the numerical modeling of Gleeble tension tests at a high temperature. A multidomain, multifield coupling resolution strategy is used for the solution of electrical, energy, and momentum conservation equations by means of the finite element method. Its application to ultra-high-strength steel is considered. After calibration with instrumented experiments, numerical results reveal that significant thermal gradients prevail in Gleeble tensile steel specimen in both axial and radial directions. Such gradients lead to the heterogeneous deformation of the specimen, which is a major difficulty for simple identification techniques of constitutive parameters, based on direct estimations of strain, strain rate, and stress. The proposed direct finite element coupled model can be viewed as an important achievement for subsequent inverse identification methods, which should be used to identify constitutive parameters for steel at a high temperature in the solid state and in the mushy state

    Chicken Organic Anion-Transporting Polypeptide 1A2, a Novel Avian Hepatitis E Virus (HEV) ORF2-Interacting Protein, Is Involved in Avian HEV Infection

    Get PDF
    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease in chickens. Due to the absence of a highly effective cell culture system, there are few reports about the interaction between avian HEV and host cells. In this study, organic anion-transporting polypeptide 1A2 (OATP1A2) from chicken liver cells was identified to interact with ap237, a truncated avian HEV capsid protein spanning amino acids 313 to 549, by a glutathione S-transferase (GST) pulldown assay. GST pulldown and indirect enzyme-linked immunosorbent assays (ELISAs) further confirmed that the extracellular domain of OATP1A2 directly binds with ap237. The expression levels of OATP1A2 in host cells are positively correlated with the amounts of ap237 attachment and virus infection. The distribution of OATP1A2 in different tissues is consistent with avian HEV infection in vivo. Finally, when the functions of OATP1A2 in cells are inhibited by its substrates or an inhibitor or blocked by ap237 or anti-OATP1A2 sera, attachment to and infection of host cells by avian HEV are significantly reduced. Collectively, these results displayed for the first time that OATP1A2 interacts with the avian HEV capsid protein and can influence viral infection in host cells. The present study provides new insight to understand the process of avian HEV infection of host cells

    Differential Expression of Rubisco in Sporophytes and Gametophytes of Some Marine Macroalgae

    Get PDF
    Rubisco (ribulose-1, 5-bisphosphate carboxylase/oxygenase), a key enzyme of photosynthetic CO2 fixation, is one of the most abundant proteins in both higher plants and algae. In this study, the differential expression of Rubisco in sporophytes and gametophytes of four seaweed species — Porphyra yezoensis, P. haitanensis, Bangia fuscopurpurea (Rhodophyte) and Laminaria japonica (Phaeophyceae) — was studied in terms of the levels of transcription, translation and enzyme activity. Results indicated that both the Rubisco content and the initial carboxylase activity were notably higher in algal gametophytes than in the sporophytes, which suggested that the Rubisco content and the initial carboxylase activity were related to the ploidy of the generations of the four algal species
    • …
    corecore