55 research outputs found

    Optomechanical heat transfer between molecules in a nanoplasmonic cavity

    Full text link
    We explore whether localized surface plasmon polariton modes can transfer heat between molecules placed in the hot spot of a nanoplasmonic cavity through optomechanical interaction with the molecular vibrations. We demonstrate that external driving of the plasmon resonance indeed induces an effective molecule-molecule interaction corresponding to a heat transfer mechanism that can even be more effective in cooling the hotter molecule than its heating due to the vibrational pumping by the plasmon. This mechanism allows us to actively control the rate of heat flow between molecules through the intensity and frequency of the driving laserThis work has been funded by the European Research Council (ERC-2016-STG-714870) and the Spanish MINECO under Contract No. MAT2014-53432-C5-5-R and the “María de Maeztu” programme for Units of Excellence in R&D (MDM-2014-0377), as well as through a Ramón y Cajal grant (JF) and support from the Iranian Ministry of Science, Research and Technology (SMA

    Quantum optomechanics of a multimode system coupled via photothermal and radiation pressure force

    Full text link
    We provide a full quantum description of the optomechanical system formed by a Fabry-Perot cavity with a movable micro-mechanical mirror whose center-of-mass and internal elastic modes are coupled to the driven cavity mode by both radiation pressure and photothermal force. Adopting a quantum Langevin description, we investigate simultaneous cooling of the micromirror elastic and center-of-mass modes, and also the entanglement properties of the optomechanical multipartite system in its steady state.Comment: 11 pages, 7 figure

    Long-distance heat transfer between molecular systems through a hybrid plasmonic-photonic nanoresonator

    Full text link
    We theoretically study a hybrid plasmonic-photonic cavity setup that can be used to induce and control long-distance heat transfer between molecular systems through optomechanical interactions. The structure we propose consists of two separated plasmonic nanoantennas coupled to a dielectric cavity. The hybrid modes of this resonator can combine the large optomechanical coupling of the sub-wavelength plasmonic modes with the large quality factor and delocalized character of the cavity mode that extends over a large distance (∼µm). We show that this can lead to effective long-range heat transport between molecular vibrations that can be actively controlled through an external driving laserThis work has been funded by the European Research Council through grant ERC-2016-StG-714870 and by the Spanish Ministry for Science, Innovation, and Universities—Agencia Estatal de Investigación through Grant Nos. RTI2018-099737-B-I00, PCI2018-093145 (through the QuantERA program of the European Commission), and MDM-2014-0377 (through the María de Maeztu program for Units of Excellence in R&D), as well as through a Ramón y Cajal grant (J F) and support from the Iranian Ministry of Science, Research and Technology (SMA

    Impact of loss on the wave dynamics in photonic waveguide lattices

    Full text link
    We analyze the impact of loss in lattices of coupled optical waveguides and find that in such case, the hopping between adjacent waveguides is necessarily complex. This results not only in a transition of the light spreading from ballistic to diffusive, but also in a new kind of diffraction that is caused by loss dispersion. We prove our theoretical results with experimental observations.Comment: Accepted for publication in PRL, 5+8 pages (Paper + Supplemental material), 4 figure

    Optomechanical Entanglement in the Presence of Laser Phase Noise

    Full text link
    We study the simplest optomechanical system in the presence of laser phase noise using the covariance matrix formalism. We show that the destructive effect of the phase noise is especially strong in the bistable regime. This explains why ground state cooling is still possible in the presence of phase noise, as it happens far away from the bistable regime. On the other hand, the optomechanical entanglement is strongly affected by phase noise.Comment: 5 pages, 3 figure

    Dynamics of levitated nanospheres: towards the strong coupling regime

    Get PDF
    The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realising quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regimes, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ωM\omega_M and single-photon optomechanical coupling strength parameters gg are a function of the optical field intensities, in contrast to usual set-ups where ωM\omega_M and gg are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r=20500r=20-500\,nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use this data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light-matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r100r \gtrsim 100\,nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes
    corecore