2,769 research outputs found
Social and Economic Impact of Solar Electricity at Schuchuli Village
Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes and other village buildings, family refrigerators and a communal washing machine and sewing machine
From the discrete to the continuous - towards a cylindrically consistent dynamics
Discrete models usually represent approximations to continuum physics.
Cylindrical consistency provides a framework in which discretizations mirror
exactly the continuum limit. Being a standard tool for the kinematics of loop
quantum gravity we propose a coarse graining procedure that aims at
constructing a cylindrically consistent dynamics in the form of transition
amplitudes and Hamilton's principal functions. The coarse graining procedure,
which is motivated by tensor network renormalization methods, provides a
systematic approximation scheme towards this end. A crucial role in this coarse
graining scheme is played by embedding maps that allow the interpretation of
discrete boundary data as continuum configurations. These embedding maps should
be selected according to the dynamics of the system, as a choice of embedding
maps will determine a truncation of the renormalization flow.Comment: 22 page
Extrapolation of Multiplicity distribution in p+p(\bar(p)) collisions to LHC energies
The multiplicity (N_ch) and pseudorapidity distribution (dN_ch/d\eta) of
primary charged particles in p+p collisions at Large Hadron Collider (LHC)
energies of \sqrt(s) = 10 and 14 TeV are obtained from extrapolation of
existing measurements at lower \sqrt(s). These distributions are then compared
to calculations from PYTHIA and PHOJET models. The existing \sqrt(s)
measurements are unable to distinguish between a logarithmic and power law
dependence of the average charged particle multiplicity () on \sqrt(s),
and their extrapolation to energies accessible at LHC give very different
values. Assuming a reasonably good description of inclusive charged particle
multiplicity distributions by Negative Binomial Distributions (NBD) at lower
\sqrt(s) to hold for LHC energies, we observe that the logarithmic \sqrt(s)
dependence of are favored by the models at midrapidity. The dN_ch/d\eta
versus \eta for the existing measurements are found to be reasonably well
described by a function with three parameters which accounts for the basic
features of the distribution, height at midrapidity, central rapidity plateau
and the higher rapidity fall-off. Extrapolation of these parameters as a
function of \sqrt(s) is used to predict the pseudorapidity distributions of
charged particles at LHC energies. dN_ch/d\eta calculations from PYTHIA and
PHOJET models are found to be lower compared to those obtained from the
extrapolated dN_ch/d\eta versus \eta distributions for a broad \eta range.Comment: 11 pages and 13 figures. Substantially revised and accepted for
publication in Journal of Physics
Cutting out continuations
In the field of program transformation, one often transforms programs into continuation-passing style to make their flow of control explicit, and then immediately removes the resulting continuations using defunctionalisation to make the programs first-order. In this article, we show how these two transformations can be fused together into a single transformation step that cuts out the need to first introduce and then eliminate continuations. Our approach is calculational, uses standard equational reasoning techniques, and is widely applicable
Bovine aortic endothelial cells are susceptible to Hantaan virus infection
AbstractHantavirus serotype Hantaan (HTN) is one of the causative agents of hemorrhagic fever with renal syndrome (HFRS, lethality up to 10%). The natural host of HTN is Apodemus agrarius. Recent studies have shown that domestic animals like cattle are sporadically seropositive for hantaviruses. In the present study, the susceptibility of bovine aortic endothelial cells (BAEC) expressing αVβ3-integrin to a HTN infection was investigated. Viral nucleocapsid protein and genomic RNA segments were detected in infected BAEC by indirect immunofluorescence assay, Western blot analysis, and reverse transcription-polymerase chain reaction (RT-PCR), respectively. The results of this study strongly support our previous observation on Puumala virus (PUU) that has been propagated efficiently in BAEC. These findings open a new window to contemplate the ecology of hantavirus infection and transmission route from animal to man
Using gamma+jets Production to Calibrate the Standard Model Z(nunu)+jets Background to New Physics Processes at the LHC
The irreducible background from Z(nunu)+jets, to beyond the Standard Model
searches at the LHC, can be calibrated using gamma+jets data. The method
utilises the fact that at high vector boson pT, the event kinematics are the
same for the two processes and the cross sections differ mainly due to the
boson-quark couplings. The method relies on a precise prediction from theory of
the Z/gamma cross section ratio at high pT, which should be insensitive to
effects from full event simulation. We study the Z/gamma ratio for final states
involving 1, 2 and 3 hadronic jets, using both the leading-order parton shower
Monte Carlo program Pythia8 and a leading-order matrix element program Gambos.
This enables us both to understand the underlying parton dynamics in both
processes, and to quantify the theoretical systematic uncertainties in the
ratio predictions. Using a typical set of experimental cuts, we estimate the
net theoretical uncertainty in the ratio to be of order 7%, when obtained from
a Monte Carlo program using multiparton matrix-elements for the hard process.
Uncertainties associated with full event simulation are found to be small. The
results indicate that an overall accuracy of the method, excluding statistical
errors, of order 10% should be possible.Comment: 22 pages, 14 figures; Accepted for publication by JHE
Adaptive Covariance Estimation with model selection
We provide in this paper a fully adaptive penalized procedure to select a
covariance among a collection of models observing i.i.d replications of the
process at fixed observation points. For this we generalize previous results of
Bigot and al. and propose to use a data driven penalty to obtain an oracle
inequality for the estimator. We prove that this method is an extension to the
matricial regression model of the work by Baraud
Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders
We compute the resummed hadronic transverse energy (E_T) distribution due to
initial-state QCD radiation in vector boson and Higgs boson production at
hadron colliders. The resummed exponent, parton distributions and coefficient
functions are treated consistently to next-to-leading order. The results are
matched to fixed-order calculations at large E_T and compared with
parton-shower Monte Carlo predictions at Tevatron and LHC energies.Comment: 24 pages, 15 figure
Angular-ordered parton showers with medium-modified splitting functions
Modified Altarelli-Parisi splitting functions were recenty proposed to model
multi-parton radiation in a dense medium and describe jet quenching, one of
most striking features of heavy-ion collisions. We implement medium-modified
splitting functions in the HERWIG parton shower algorithm, which satisfies the
angular ordering prescription, and present a few parton-level results, such as
transverse momentum, angle and energy-fraction distributions, which exhibit
remarkable medium-induced effects. We also comment on the comparison with
respect to the results yielded by other implementations of medium-modified
splitting functions in the framework of virtuality-ordered parton cascades.Comment: 19 pages, 8 figures, 1 table. Minor changes after referee repor
- …