126 research outputs found

    Intra-cochlear differences in the spread of excitation between biphasic and triphasic pulse stimulation in cochlear implants: a modeling and experimental study

    Get PDF
    Triphasic pulse stimulation can prevent unpleasant facial nerve stimulation in cochlear implant users. Using electromyographic measurements on facial nerve effector muscles, previous studies have shown that biphasic and triphasic pulse stimulations produce different input-output functions. However, little is known about the intracochlear effects of triphasic stimulation and how these may contribute to the amelioration of facial nerve stimulation.The present study used a computational model of implanted human cochleae to investigate the effect of pulse shape on the intracochlear spread of excitation. Biphasic and triphasic pulse stimulations were simulated from three different cochlear implant electrode contact positions. To validate the model results, experimental spread of excitation measurements were conducted with biphasic and triphasic pulse stimulation from three different electrode contact positions in 13 cochlear implant users.The model results depict differences between biphasic and triphasic pulse stimulations depending on the position of the stimulating electrode contact. While biphasic and triphasic pulse stimulations from a medial or basal electrode contact caused similar extents of neural excitation, differences between the pulse shapes were observed when the stimulating contact was located in the cochlear apex. In contrast, the experimental results showed no difference between the biphasic and triphasic initiated spread of excitation for any of the tested contact positions. The model was also used to study responses of neurons without peripheral processes to mimic the effect of neural degeneration. For all three contact positions, simulated degeneration shifted the neural responses towards the apex. Biphasic pulse stimulation showed a stronger response with neural degeneration compared to without degeneration, while triphasic pulse stimulation showed no difference.As previous measurements have demonstrated an ameliorative effect of triphasic pulse stimulation on facial nerve stimulation from medial electrode contact positions, the results imply that a complementary effect located at the facial nerve level must be responsible for reducing facial nerve stimulation.Disorders of the head and nec

    COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy.

    Full text link
    BACKGROUND: Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotype-specific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3). OBJECTIVE: To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response. METHODS: The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (paediatric cases/controls: n=134/n=35; adult cases/controls: n=149/n=31). Exacerbation of allergic airway disease in mice was induced by sensitising to ovalbumin (OVA), challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat (chymase inhibitor; Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (n=14) and cystic fibrosis with allergic bronchopulmonary aspergillosis (ABPA; n=9) as well as patients with severe allergic uncontrolled asthma (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed using the Asthma Control Test. RESULTS: Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in cystic fibrosis plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic OR 31.5). CONCLUSION: C4Ma3 levels depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response

    Short Term Depression Unmasks the Ghost Frequency

    Get PDF
    Short Term Plasticity (STP) has been shown to exist extensively in synapses throughout the brain. Its function is more or less clear in the sense that it alters the probability of synaptic transmission at short time scales. However, it is still unclear what effect STP has on the dynamics of neural networks. We show, using a novel dynamic STP model, that Short Term Depression (STD) can affect the phase of frequency coded input such that small networks can perform temporal signal summation and determination with high accuracy. We show that this property of STD can readily solve the problem of the ghost frequency, the perceived pitch of a harmonic complex in absence of the base frequency. Additionally, we demonstrate that this property can explain dynamics in larger networks. By means of two models, one of chopper neurons in the Ventral Cochlear Nucleus and one of a cortical microcircuit with inhibitory Martinotti neurons, it is shown that the dynamics in these microcircuits can reliably be reproduced using STP. Our model of STP gives important insights into the potential roles of STP in self-regulation of cortical activity and long-range afferent input in neuronal microcircuits

    The lancet weight determines wheal diameter in response to skin prick testing with histamine

    Get PDF
    BACKGROUND:Skin prick test (SPT) is a common test for diagnosing immunoglobulin E-mediated allergies. In clinical routine, technicalities, human errors or patient-related biases, occasionally results in suboptimal diagnosis of sensitization. OBJECTIVE:Although not previously assessed qualitatively, lancet weight is hypothesized to be important when performing SPT to minimize the frequency of false positives, false negatives, and unwanted discomfort. METHODS:Accurate weight-controlled SPT was performed on the volar forearms and backs of 20 healthy subjects. Four predetermined lancet weights were applied (25 g, 85 g, 135 g and 265 g) using two positive control histamine solutions (1 mg/mL and 10 mg/mL) and one negative control (saline). A total of 400 SPTs were conducted. The outcome parameters were: wheal size, neurogenic inflammation (measured by superficial blood perfusion), frequency of bleeding, and the lancet provoked pain response. RESULTS:The mean wheal diameter increased significantly as higher weights were applied to the SPT lancet, e.g. from 3.2 ± 0.28 mm at 25 g to 5.4 ± 1.7 mm at 265 g (p<0.01). Similarly, the frequency of bleeding, the provoked pain, and the neurogenic inflammatory response increased significantly. At 265 g saline evoked two wheal responses (/160 pricks) below 3 mm. CONCLUSION AND CLINICAL RELEVANCE:The applied weight of the lancet during the SPT-procedure is an important factor. Higher lancet weights precipitate significantly larger wheal reactions with potential diagnostic implications. This warrants additional research of the optimal lancet weight in relation to SPT-guidelines to improve the specificity and sensitivity of the procedure

    Multi-ancestry genome-wide association study of asthma exacerbations

    Get PDF
    Altres ajuts: European Regional Development Fund "ERDF A way of making Europe"; Allergopharma-EAACI award 2021; SysPharmPedia grant from the ERACoSysMed 1st Joint Transnational Call from the European Union under the Horizon 2020; Sandler Family Foundation; American Asthma Foundation; RWJF Amos Medical Faculty Development Program; National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL117004, R01HL128439, R01HL135156, X01HL134589, R01HL141992, R01HL141845); National Institute of Health and Environmental Health Sciences (R01ES015794, R21ES24844); National Institute on Minority Health and Health Disparities (NIMHD) (P60MD006902, R01MD010443, R56MD013312); National Institute of General Medical Sciences (NIGMS) (RL5GM118984); Tobacco-Related Disease Research Program (24RT-0025, 27IR-0030); National Human Genome Research Institute (NHGRI) (U01HG009080); GlaxoSmithKline and Utrecht Institute for Pharmaceutical Sciences; Slovenian Research Agency (P3-0067); SysPharmPediA grant, co-financed by the Ministry of Education, Science and Sport Slovenia (MIZS) (C3330-16-500106); NHS Research Scotland; Wellcome Trust Biomedical Resource (099177/Z/12/Z); Genotyping National Centre (CeGEN) CeGen-PRB3-ISCIII (AC15/00015); UK Medical Research Council and Wellcome (102215/2/13/2); University of Bristol; Swedish Heart-Lung Foundation, Swedish Research Council; Region Stockholm (ALF project and database maintenance); NHS Chair of Pharmacogenetics via the UK Department of Health; Innovative Medicines Initiative (IMI) (115010); European Federation of Pharmaceutical Industries and Associations (EFPIA); Spanish National Cancer Research Centre; Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC19/17); Erasmus Medical Center; Erasmus University Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); Ministry of Education, Culture and Science; Ministry for Health, Welfare and Sports; European Commission (DG XII); Municipality of Rotterdam; German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF); U.S. National Institutes of Health (HL07966); European Social Fund "ESF Investing in your future"; Ministerio de Ciencia, Innovación y Universidades; Universidad de La Laguna (ULL); European Academy of Allergy and Clinical Immunology (EAACI); European Respiratory Society (ERS) (LTRF202101-00861); Ministry of Education, Science and Sport of the Republic of Slovenia (C3330-19-252012); Singapore Ministry of Education Academic Research Fund; Singapore Immunology Network (SIgN); National Medical Research Council (NMRC Singapore); Biomedical Research Council (BMRC Singapore); Agency for Science Technology and Research (A*STAR Singapore, N-154-000-038-001, R-154-000-191-112, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, R-154-000-A91-592, R-154-000-A95-592, R-154-000-B99-114, BMRC/01/1/21/18/077, BMRC/04/1/21/19/315, SIgN-06-006, SIgN-08-020, NMRC/1150/2008, H17/01/a0/008); Sime Darby Technology Centre; First Resources Ltd; Genting Plantation; Olam International; U.S. National Institutes of Health (HL138098).Background: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. Methods: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. Results: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (OR) = 0.82, p = 9.05 × 10 and replication: OR = 0.89, p = 5.35 × 10) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: OR = 0.85, p = 3.10 × 10 and replication: OR = 0.89, p = 1.30 × 10). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. Conclusions: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense
    • …
    corecore