84 research outputs found
Efficient channel estimation for reconfigurable MIMO antennas: Training techniques and performance analysis
Multifunctional and reconfigurable multiple-input multiple-output (MR-MIMO) antennas are capable of dynamically changing the operation frequencies, polarizations, and radiation patterns, and can remarkably enhance system capabilities. However, in coherent communication systems, using MR-MIMO antennas with a large number of operational modes may incur prohibitive complexity due to the need for channel state estimation for each mode. To address this issue, we derive an explicit relation among the radiation patterns for the antenna modes and the resulting channel gains. We propose a joint channel estimation/prediction scheme where only a subset of all the antenna modes is trained for estimation, and then, the channels associated with the modes that are not trained are predicted using the correlations among the different antenna modes. We propose various training mechanisms with reduced overhead and improved estimation performance, and study the impact of channel estimation error and training overhead on the MR-MIMO system performance. We demonstrate that one can achieve significantly improved data rates and lower error probabilities utilizing the proposed approaches. For instance, under practical settings, we observe about 25% throughput increase or about 3-dB signal-to-noise ratio improvement under the same training overhead with respect to non-reconfigurable antenna systems. © 2002-2012 IEEE
PathwayMapper: A collaborative visual web editor for cancer pathways and genomic data
Motivation: While existing network visualization tools enable the exploration of cancer genomics data, most biologists prefer simplified, curated pathway diagrams, such as those featured in many manuscripts from The Cancer Genome Atlas (TCGA). These pathway diagrams typically summarize how a pathway is altered in individual cancer types, including alteration frequencies for each gene. Results: To address this need, we developed the web-based tool PathwayMapper, which runs in most common web browsers. It can be used for viewing pre-curated cancer pathways, or as a graphical editor for creating new pathways, with the ability to overlay genomic alteration data from cBioPortal. In addition, a collaborative mode is available that allows scientists to co-operate interactively on constructing pathways, with support for concurrent modifications and built-in conflict resolution. © 2017 The Author. Published by Oxford University Press. All rights reserved
Collaborative workspaces for pathway curation
We present a web based visual biocuration workspace, focusing on curating detailed mechanistic pathways. It was designed as a flexible platform where multiple humans, NLP and AI agents can collaborate in real-time on a common model using an event driven API. We will use this platform for exploring disruptive technologies that can scale up biocuration such as NLP, human-computer collaboration, crowd-sourcing, alternative publishing and gamification. As a first step, we are designing a pilot to include an author-curation step into the scientific publishing, where the authors of an article create formal pathway fragments representing their discovery- heavily assisted by computer agents. We envision that this "microcuration" use-case will create an excellent opportunity to integrate multiple NLP approaches and semi-automated curation. © 2016, CEUR-WS. All rights reserved
Recommended from our members
Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study.
BackgroundInternal tandem duplication mutations in FLT3 are common in acute myeloid leukaemia and are associated with rapid relapse and short overall survival. The clinical benefit of FLT3 inhibitors in patients with acute myeloid leukaemia has been limited by rapid generation of resistance mutations, particularly in codon Asp835 (D835). We aimed to assess the highly selective oral FLT3 inhibitor gilteritinib in patients with relapsed or refractory acute myeloid leukaemia.MethodsIn this phase 1-2 trial, we enrolled patients aged 18 years or older with acute myeloid leukaemia who either were refractory to induction therapy or had relapsed after achieving remission with previous treatment. Patients were enrolled into one of seven dose-escalation or dose-expansion cohorts assigned to receive once-daily doses of oral gilteritinib (20 mg, 40 mg, 80 mg, 120 mg, 200 mg, 300 mg, or 450 mg). Cohort expansion was based on safety and tolerability, FLT3 inhibition in correlative assays, and antileukaemic activity. Although the presence of an FLT3 mutation was not an inclusion criterion, we required ten or more patients with locally confirmed FLT3 mutations (FLT3mut+) to be enrolled in expansion cohorts at each dose level. On the basis of emerging findings, we further expanded the 120 mg and 200 mg dose cohorts to include FLT3mut+ patients only. The primary endpoints were the safety, tolerability, and pharmacokinetics of gilteritinib. Safety and tolerability were assessed in the safety analysis set (all patients who received at least one dose of gilteritinib). Responses were assessed in the full analysis set (all patients who received at least one dose of study drug and who had at least one datapoint post-treatment). Pharmacokinetics were assessed in a subset of the safety analysis set for which sufficient data for concentrations of gilteritinib in plasma were available to enable derivation of one or more pharmacokinetic variables. This study is registered with ClinicalTrials.gov, number NCT02014558, and is ongoing.FindingsBetween Oct 15, 2013, and Aug 27, 2015, 252 adults with relapsed or refractory acute myeloid leukaemia received oral gilteritinib once daily in one of seven dose-escalation (n=23) or dose-expansion (n=229) cohorts. Gilteritinib was well tolerated; the maximum tolerated dose was established as 300 mg/day when two of three patients enrolled in the 450 mg dose-escalation cohort had two dose-limiting toxicities (grade 3 diarrhoea and grade 3 elevated aspartate aminotransferase). The most common grade 3-4 adverse events irrespective of relation to treatment were febrile neutropenia (97 [39%] of 252), anaemia (61 [24%]), thrombocytopenia (33 [13%]), sepsis (28 [11%]), and pneumonia (27 [11%]). Commonly reported treatment-related adverse events were diarrhoea (92 [37%] of 252]), anaemia (86 [34%]), fatigue (83 [33%]), elevated aspartate aminotransferase (65 [26%]), and increased alanine aminotransferase (47 [19%]). Serious adverse events occurring in 5% or more of patients were febrile neutropenia (98 [39%] of 252; five related to treatment), progressive disease (43 [17%]), sepsis (36 [14%]; two related to treatment), pneumonia (27 [11%]), acute renal failure (25 [10%]; five related to treatment), pyrexia (21 [8%]; three related to treatment), bacteraemia (14 [6%]; one related to treatment), and respiratory failure (14 [6%]). 95 people died in the safety analysis set, of which seven deaths were judged possibly or probably related to treatment (pulmonary embolism [200 mg/day], respiratory failure [120 mg/day], haemoptysis [80 mg/day], intracranial haemorrhage [20 mg/day], ventricular fibrillation [120 mg/day], septic shock [80 mg/day], and neutropenia [120 mg/day]). An exposure-related increase in inhibition of FLT3 phosphorylation was noted with increasing concentrations in plasma of gilteritinib. In-vivo inhibition of FLT3 phosphorylation occurred at all dose levels. At least 90% of FLT3 phosphorylation inhibition was seen by day 8 in most patients receiving a daily dose of 80 mg or higher. 100 (40%) of 249 patients in the full analysis set achieved a response, with 19 (8%) achieving complete remission, ten (4%) complete remission with incomplete platelet recovery, 46 (18%) complete remission with incomplete haematological recovery, and 25 (10%) partial remission INTERPRETATION: Gilteritinib had a favourable safety profile and showed consistent FLT3 inhibition in patients with relapsed or refractory acute myeloid leukaemia. These findings confirm that FLT3 is a high-value target for treatment of relapsed or refractory acute myeloid leukaemia; based on activity data, gilteritinib at 120 mg/day is being tested in phase 3 trials.FundingAstellas Pharma, National Cancer Institute (Leukemia Specialized Program of Research Excellence grant), Associazione Italiana Ricerca sul Cancro
A Multifaceted Analysis of Immune-Endocrine-Metabolic Alterations in Patients with Pulmonary Tuberculosis
Our study investigated the circulating levels of factors involved in immune-inflammatory-endocrine-metabolic responses in patients with tuberculosis with the aim of uncovering a relation between certain immune and hormonal patterns, their clinical status and in vitro immune response. The concentration of leptin, adiponectin, IL-6, IL-1β, ghrelin, C-reactive protein (CRP), cortisol and dehydroepiandrosterone (DHEA), and the in vitro immune response (lymphoproliferation and IFN-γ production) was evaluated in 53 patients with active untreated tuberculosis, 27 household contacts and 25 healthy controls, without significant age- or sex-related differences. Patients had a lower body mass index (BMI), reduced levels of leptin and DHEA, and increased concentrations of CRP, IL-6, cortisol, IL-1β and nearly significant adiponectin values than household contacts and controls. Within tuberculosis patients the BMI and leptin levels were positively correlated and decreased with increasing disease severity, whereas higher concentrations of IL-6, CRP, IL-1β, cortisol, and ghrelin were seen in cases with moderate to severe tuberculosis. Household contacts had lower DHEA and higher IL-6 levels than controls. Group classification by means of discriminant analysis and the k-nearest neighbor method showed that tuberculosis patients were clearly different from the other groups, having higher levels of CRP and lower DHEA concentration and BMI. Furthermore, plasma leptin levels were positively associated with the basal in vitro IFN-γ production and the ConA-driven proliferation of cells from tuberculosis patients. Present alterations in the communication between the neuro-endocrine and immune systems in tuberculosis may contribute to disease worsening
Getting ‘Smad' about obesity and diabetes
Recent findings on the role of transforming growth factor (TGF)-β/Smad3 signaling in the pathogenesis of obesity and type 2 diabetes have underscored its importance in metabolism and adiposity. Indeed, elevated TGF-β has been previously reported in human adipose tissue during morbid obesity and diabetic neuropathy. In this review, we discuss the pleiotropic effects of TGF-β/Smad3 signaling on metabolism and energy homeostasis, all of which has an important part in the etiology and progression of obesity-linked diabetes; these include adipocyte differentiation, white to brown fat phenotypic transition, glucose and lipid metabolism, pancreatic function, insulin signaling, adipocytokine secretion, inflammation and reactive oxygen species production. We summarize the recent in vivo findings on the role of TGF-β/Smad3 signaling in metabolism based on the studies using Smad3−/− mice. Based on the presence of a dual regulatory effect of Smad3 on peroxisome proliferator-activated receptor (PPAR)β/δ and PPARγ2 promoters, we propose a unifying mechanism by which this signaling pathway contributes to obesity and its associated diabetes. We also discuss how the inhibition of this signaling pathway has been implicated in the amelioration of many facets of metabolic syndromes, thereby offering novel therapeutic avenues for these metabolic conditions
Oncogenic Signaling Pathways in The Cancer Genome Atlas.
Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy
- …