70 research outputs found

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments

    Advanced Scanning Electron Microscopy Methods and Applications to Integrated Circuit Failure Analysis

    Get PDF
    Semiconductor device failure analysis using the scanning electron microscope (SEM) has become a standard component of integrated circuit fabrication. Improvements in SEM capabilities and in digital imaging and processing have advanced standard acquisition modes and have promoted new failure analysis methods. The physical basis of various data acquisition modes, both standard and new, and their implementation on a computer controlled SEM image acquisition/processing system are discussed, emphasizing the advantages of each method. Design considerations for an integrated, online failure analysis system are also described. Recent developments in the integration of the information provided by electron beam analysis, conventional integrated circuit (IC) testing, computer-aided design (CAD), and device parameter testing into a single system promise to provide powerful future tools for failure analysis

    Regulation of ciliated cell differentiation in cultures of rat tracheal epithelial cells.

    Get PDF
    The cellular pathway of ciliated cell differentiation and its regulation is poorly defined. To begin to understand the process of ciliated cell differentiation, we sought to identify factors regulating ciliated cell development in vitro. Rat tracheal epithelial (RTE) cells were cultured on collagen gel-coated membranes at an air-liquid interface in hormone- and growth factor-supplemented medium (complete medium [CM]). Under these conditions, RTE cells first proliferate and then differentiate into a pseudostratified mucociliary epithelium. Ciliated cell differentiation was measured using a monoclonal antibody, RTE3, which was shown to specifically react with the plasma membrane of ciliated cells. Cultures were immunostained in situ, and the percentage of the culture surface covered with ciliated cells was estimated using videomicroscopy and an image analysis program. If an air-liquid interface was not created and the cells were maintained in the submerged state, ciliated cell differentiation was suppressed 25-fold. Culture in the absence of mitogenic components present in CM, including epidermal growth factor (EGF), cholera toxin (CT), or bovine pituitary extract, resulted in 2- to 4-fold increases in the percentage of ciliated cells. When both EGF and CT were removed from the media, DNA synthesis and total cell number was reduced, while ciliated cell differentiation increased as much as 5-fold. These results demonstrate that submersion inhibits, while withdrawal of mitogenic compounds promotes, ciliated cell differentiation in vitro

    Optimal control as a graphical model inference problem

    Get PDF
    We reformulate a class of non-linear stochastic optimal control problems introduced by Todorov (2007) as a Kullback-Leibler (KL) minimization problem. As a result, the optimal control computation reduces to an inference computation and approximate inference methods can be applied to efficiently compute approximate optimal controls. We show how this KL control theory contains the path integral control method as a special case. We provide an example of a block stacking task and a multi-agent cooperative game where we demonstrate how approximate inference can be successfully applied to instances that are too complex for exact computation. We discuss the relation of the KL control approach to other inference approaches to control.Comment: 26 pages, 12 Figures; Machine Learning Journal (2012

    A familial risk enriched cohort as a platform for testing early interventions to prevent severe mental illness

    Get PDF

    Analysis of Open Commitments in Wheat and Corn Futures on the Chicago Board of Trade, September 29, 1934

    No full text
    Contents: Introduction --- Number of accounts and volume of open commitments --- Distribution of accounts and open commitments between speculators and hedgers --- Size of accounts --- Geographical distribution of traders --- Occupations of traders --- Summary and conclusions
    corecore