1,230 research outputs found

    Aharonov-Bohm differential conductance modulation in defective metallic single-wall carbon nanotubes

    Full text link
    Using a perturbative approach, the effects of the energy gap induced by the Aharonov-Bohm (AB) flux on the transport properties of defective metallic single-walled carbon nanotubes (MSWCNTs) are investigated. The electronic waves scattered back and forth by a pair of impurities give rise to Fabry-Perot oscillations which constitutes a coherent backscattering interference pattern (CBSIP). It is shown that, the CBSIP is aperiodically modulated by applying a magnetic field parallel to the nanotube axis. In fact, the AB-flux brings this CBSIP under control by an additional phase shift. As a consequence, the extrema as well as zeros of the CBSIP are located at the irrational fractions of the quantity Φρ=Φ/Φ0\Phi_\rho={\Phi}/{\Phi_0}, where Φ\Phi is the flux piercing the nanotube cross section and Φ0=h/e\Phi_{0}=h/e is the magnetic quantum flux. Indeed, the spacing between two adjacent extrema in the magneto-differential conductance (MDC) profile is decreased with increasing the magnetic field. The faster and higher and slower and shorter variations is then obtained by metallic zigzag and armchair nanotubes, respectively. Such results propose that defective metallic nanotubes could be used as magneto-conductance switching devices based on the AB effect.Comment: 11 pages, 4 figure

    Retrieval of marine water constituents from AVIRIS data in the Hudson/Raritan Estuary

    Get PDF
    This paper reports on the validation of bio-optical models in estuarine and nearshore (case 2) waters of New Jersey-New York to retrieve accurate water leaving radiance spectra and chlorophyll concentration from the NASA Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data complemented with in situ measurements. The study area - Hudson/Raritan Estuary - is a complex estuarine system where tidal and wind-driven currents are modified by freshwater discharges from the Hudson, Raritan, Hackensack, and Passaic rivers. Over the last century the estuarine water quality has degraded, in part due to eutrophication, which has disrupted the pre-existing natural balance, resulting in phytoplankton blooms of both increased frequency and intensity, increasing oxygen demand and leading to episodes of hypoxia. During 1999-2001 data acquisitions by NASA AVIRIS field measurements were obtained to establish hydrological optical properties of the Hudson/Raritan Estuary: (1) concurrent above- and below-surface spectral irradiance; (2) sampling for laboratory determination of inherent optical properties; and (3) concentrations of optically-important water quality parameters. We used a bio-optical model based on Gordon et al. to predict the sub-surface irradiance reflectance from optically important water constituents. Modelling of reflectance is a prerequisite for processing remote sensing data to desired thematic maps for input into the geographical information system (GIS) for use as a management tool in water quality assessment. A Radiative Transfer Code - MODTRAN-4 - was applied to remove the effects of the atmosphere so as to infer the water leaving radiance from the AVIRS data. The results of this procedure were not satisfactory, therefore an alternative approach was tested to directly correct the AVIRIS image using modelled spectra based on measured optical characteristics. The atmospherically corrected AVIRIS ratio image was used to calculate a thematic map of water quality parameters (i.e. chlorophyll-a) concentration, which subsequently were integrated into a GIS for management of water quality purposes. © 2005 Taylor & Francis

    Differential cross sections for pion charge exchange on the proton at 27.5 MeV

    Full text link
    We have measured pion single charge exchange differential cross sections on the proton at 27.5 MeV incident π\pi^- kinetic energy in the center of momentum angular range between 00^\circ and 5555^\circ. The extracted cross sections are compared with predictions of the standard pion-nucleon partial wave analysis and found to be in excellent agreement.Comment: ReVTeX v3.0 with aps.sty, 23 pages in e-print format, 7 PostScript Figures and 4 Tables, also available via anonymous ftp at ftp://helena.phys.virginia.edu/pub/preprints/scx.p

    CXCL-10: a new candidate for melanoma therapy?

    Get PDF
    Background: Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking. Conclusions: Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target. © 2020, International Society for Cellular Oncology

    Isofuranodiene, a natural sesquiterpene isolated from wild celery (Smyrnium olusatrum L.), protects rats against acute ischemic stroke

    Get PDF
    The myrrh-like furanosesquiterpene isofuranodiene (IFD) is the main constituent of wild celery (Smyrnium olusatrum L., Apiaceae), an overlooked vegetable that was cultivated during the Roman Empire. In the present study, we investigated the protective effects of IFD pre-treatment against oxidative stress and inflammatory response in an animal model of ischemic stroke. IFD was isolated by the crystallization of Smyrnium olusatrum essential oil, and its structure and purity were confirmed by NMR and HPLC analyses. Acute pre-treatment of IFD (10 mg/kg i.p.) significantly reduced the levels of the inflammatory cytokines IL-1β and TNF-α, the expression of pNF-κB/NF-κB, and the lipid peroxidation indicator MDA. Finally, IFD boosted a faster recovery and better scores in grid-walking and modified neurological severity scores (mNSS) tests. Taken together, these findings indicate IFD as a promising lead compound for the discovery of new treatments of brain ischemia

    Correlation Between Mucosal IL-6 mRNA Expression Level and Virulence Factors of Helicobacter pylori in Iranian Adult Patients With Chronic Gastritis

    Get PDF
    Background: Helicobacter pylori infection is associated with gastritis and marked infiltration of the gastric mucosa by several cytokines secreting inflammatory cells that contribute to sustained local inflammation. In this study, we sought to examine IL-6 expression in H. pylori-infected and uninfected gastric mucosa and elucidate the implication in the pathogenesis of H. pylori-associated gastritis in human. Objectives: The current study aimed to determine mucosal IL-6 mRNA expression level and their correlation with virulence factors and the grade of chronic gastritis among H. pylori infected patients with chronic gastritis from Shahrekord, Iran. Patients and Methods: Mucosal IL-6 mRNA levels was measured by real-time PCR using endoscopic biopsies taken from the gastric antrum of 58 subjects infected with H. pylori and 44 uninfected subjects. Presence of vacA and cagA virulence factors was evaluated using PCR. Results: The IL-6 mRNA expression levels were significantly more elevated in H. pylori-positive patients than uninfected individuals and expression of this cytokine was independent from the virulence factors. There was a correlation between IL-6 expression level and the grade of chronic gastritis. Conclusions: Enhanced induction of IL-6 may be involved in the pathogenesis of H. pylon-associated gastritis

    Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors

    Get PDF
    Systemic chemotherapy has lost its position to treat cancer over the past years mainly due to drug resistance, side effects, and limited survival ratio. Among a plethora of local drug delivery systems to solve this issue, the combinatorial strategy of chemo-hyperthermia has recently received attention. Herein we developed a magneto-thermal nanocarrier consisted of superparamagnetic iron oxide nanoparticles (SPIONs) coated by a blend formulation of a three-block copolymer Pluronic F127 and F68 on the oleic acid (OA) in which Curcumin as a natural and chemical anti-cancer agent was loaded. The subsequent nanocarrier SPION@OA-F127/F68-Cur was designed with a controlled gelation temperature of the shell, which could consequently control the release of curcumin. The release was systematically studied as a function of temperature and pH, via response surface methodology (RSM). The bone tumor killing efficacy of the released curcumin from the carrier in combination with the hyperthermia was studied on MG-63 osteosarcoma cells through Alamar blue assay, live-dead staining and apoptosis caspase 3/7 activation kit. It was found that the shrinkage of the F127/F68 layer stimulated by elevated temperature in an alternative magnetic field caused the curcumin release. Although the maximum release concentration and cell death took place at 45 °C, treatment at 41 °C was chosen as the optimum condition due to considerable cell apoptosis and lower side effects of mild hyperthermia. The cell metabolic activity results confirmed the synergistic effects of curcumin and hyperthermia in killing MG-63 osteosarcoma cells

    Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses

    Get PDF
    As the coronavirus disease 2019 (COVID-19) pandemic unfolds, neurological signs and symptoms reflect the involvement of targets beyond the primary lung effects. The etiological agent of COVID-19, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits neurotropism for central and peripheral nervous systems. Various infective mechanisms and paths can be exploited by the virus to reach the central nervous system, some of which bypass the blood-brain barrier; others alter its integrity. Numerous studies have established beyond doubt that the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) performs the role of SARS-CoV-2 host-cell receptor. Histochemical studies and more recently transcriptomics of mRNA have dissected the cellular localization of the ACE2 enzyme in various tissues, including the central nervous system. Epithelial cells lining the nasal mucosae, the upper respiratory tract, and the oral cavity, bronchoalveolar cells type II in the pulmonary parenchyma, and intestinal enterocytes display ACE2 binding sites at their cell surfaces, making these epithelial mucosae the most likely viral entry points. Neuronal and glial cells and endothelial cells in the central nervous system also express ACE2. This short review analyzes the known entry points and routes followed by the SARS-CoV-2 to reach the central nervous system and postulates new hypothetical pathways stemming from the enterocytes lining the intestinal lumen.Fil: Barrantes, Francisco Jose. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentin

    Long-Term Functionality of Rural Water Services in Developing Countries: A System Dynamics Approach to Understanding the Dynamic Interaction of Causal Factors

    Full text link
    Research has shown that sustainability of rural water infrastructure in developing countries is largely affected by the dynamic and systemic interactions of technical, social, financial, institutional, and environmental factors that can lead to premature water system failure. This research employs systems dynamic modeling, which uses feedback mechanisms to understand how these factors interact dynamically to influence long-term rural water system functionality. To do this, the research first identified and aggregated key factors from literature, then asked water sector experts to indicate the polarity and strength between factors through Delphi and cross impact survey questionnaires, and finally used system dynamics modeling to identify and prioritize feedback mechanisms. The resulting model identified 101 feedback mechanisms that were dominated primarily by three and four-factor loops that contained some combination of the factors: Water System Functionality, Community, Financial, Government, Management, and Technology. These feedback mechanisms were then scored and prioritized, with the most dominant feedback mechanism identified as Water System Functionality – Community – Finance – Management. This research offers insight into the dynamic interaction of factors impacting sustainability of rural water infrastructure through the identification of these feedback mechanisms and makes a compelling case for future research to longitudinally investigate the interaction of these factors in various contexts
    corecore