77 research outputs found

    A novel extraction method for peanut allergenic proteins in chocolate and their detection by a liposome-based lateral flow assay

    Get PDF
    In this study, conditions for extracting the major peanut allergen (Ara h1) from chocolate were optimized, and the extracted samples were analyzed by a lateral flow assay (LFA) using liposomal nanovesicles. The optimal conditions using peanut-spiked chocolate were found to be extraction with a mixture of phosphate buffered saline and hexane for 30min at 35°C. After centrifugation, the buffer portion was treated with insoluble poly(vinylpolypyrrolidone) to remove phenolic compounds, and then analyzed by the LFA. The entire analysis, including sample preparation and LFA, could be easily completed within 2h, and the detection limit was 158Όg of peanuts/g of chocolat

    Enhanced Chemiluminescence of a Superior Luminol Derivative Provides Sensitive Smartphone‐Based Point‐of‐Care Testing with Enzymatic ÎŒPAD

    Get PDF
    Chemiluminescence (CL) provides ideal conditions for point-of-care testing (POCT) with wide dynamic ranges, superior sensitivities, and detection simplicity. It has not arrived routinely in the POCT field due to naturally low quantum yields of typical probes and the lack of sensitive low-cost detection devices. Here, we developed a universal microfluidic paper-based analytical device (ÎŒPAD) using l-lactate as model analyte. We demonstrate that a smartphone camera can compete with a scientific CCD camera as performance benchmark when using the strong CL emitter, m-carboxy luminol, resulting in extraordinary signal-to-noise ratios of 67. The ÎŒPAD provides CV<10 %, stability at room temperature for≄3 months and simple processing. Furthermore, the ÎŒPAD enables the detection of picomoles of the luminophore providing additional design flexibility. Thus, this new CL-ÎŒPAD is available for translating the many CL standard analytical assays performed in microtiter plates, microarrays or other more complex detection strategies to the POC

    Freestanding 3D-interconnected carbon nanofibers as high-performance transducers in miniaturized electrochemical sensors

    Get PDF
    3D-carbon nanomaterials have proven to be high-performance transducers in electrochemical sensors but their integration into miniaturized devices is challenging. Herein, we develop printable freestanding laser-induced carbon nanofibers (f-LCNFs) with outstanding analytical performance that furthermore can easily allow such miniaturization through a paper-based microfluidic strategy. The f-LCNF electrodes were generated from electrospun polyimide nanofibers and one-step laser carbonization. A three-electrode system made of f-LCNFs exhibited a limit of detection (LOD) as low as 1 nM (S/N = 8) for anodic stripping analysis of silver ions, exhibiting the peak at ca. 100 mV vs f-LCNFs RE, without the need of stirring. The as-described system was implemented in miniaturized devices via wax-based printing, in which their electroanalytical performance was characterized for both outer- and inner-sphere redox markers and then applied to the detection of dopamine (the peak appeared at ca. 200 mV vs f-LCNFs RE) with a remarkable LOD of 55 pM. When modified with Nafion, the f-LCNFs were highly selective to dopamine even against high concentrations of uric and ascorbic acids. Especially the integration into closed microfluidic systems highlights the strength 3D porous structures provides excellent analytical performance paving the way for their translation to affordable lab-on-a-chip devices where mass-production capability, unsophisticated fabrication techniques, transfer-free, and customized electrode designs can be realized

    Critical review of polymer and hydrogel deposition methods for optical and electrochemical bioanalytical sensors correlated to the sensor’s applicability in real samples

    Get PDF
    Sensors, ranging from in vivo through to single-use systems, employ protective membranes or hydrogels to enhance sample collection or serve as filters, to immobilize or entrap probes or receptors, or to stabilize and enhance a sensor’s lifetime. Furthermore, many applications demand specific requirements such as biocompatibility and non-fouling properties for in vivo applications, or fast and inexpensive mass production capabilities for single-use sensors. We critically evaluated how membrane materials and their deposition methods impact optical and electrochemical systems with special focus on analytical figures of merit and potential toward large-scale production. With some chosen examples, we highlight the fact that often a sensor’s performance relies heavily on the deposition method, even though other methods or materials could in fact improve the sensor. Over the course of the last 5 years, most sensing applications within healthcare diagnostics included glucose, lactate, uric acid, O2, H+ ions, and many specific metabolites and markers. In the case of food safety and environmental monitoring, the choice of analytes was much more comprehensive regarding a variety of natural and synthetic toxicants like bacteria, pesticides, or pollutants and other relevant substances. We conclude that more attention must be paid toward deposition techniques as these may in the end become a major hurdle in a sensor’s likelihood of moving from an academic lab into a real-world product

    A biosensor assay for the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples

    Get PDF
    A simple, membrane-strip-based lateral-flow (LF) biosensor assay and a high-throughput microtiter plate assay have been combined with a reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of a small number (ten) of viable Mycobacterium (M.) avium subsp. paratuberculosis (MAP) cells in fecal samples. The assays are based on the identification of the RNA of the IS900 element of MAP. For the assay, RNA was extracted from fecal samples spiked with a known quantity of (101 to 106) MAP cells and amplified using RT-PCR and identified by the LF biosensor and the microtiter plate assay. While the LF biosensor assay requires only 30 min of assay time, the overall process took 10 h for the detection of 10 viable cells. The assays are based on an oligonucleotide sandwich hybridization assay format and use either a membrane flow through system with an immobilized DNA probe that hybridizes with the target sequence or a microtiter plate well. Signal amplification is provided when the target sequence hybridizes to a second DNA probe that has been coupled to liposomes encapsulating the dye, sulforhodamine B. The dye in the liposomes provides a signal that can be read visually, quantified with a hand-held reflectometer, or with a fluorescence reader. Specificity analysis of the assays revealed no cross reactivity with other mycobacteria, such as M. avium complex, M. ulcerans, M. marium, M. kansasii, M. abscessus, M. asiaticum, M. phlei, M. fortuitum, M. scrofulaceum, M. intracellulare, M. smegmatis, and M. bovis. The overall assay for the detection of live MAP organisms is comparatively less expensive and quick, especially in comparison to standard MAP detection using a culture method requiring 6-8 weeks of incubation time, and is significantly less expensive than real-time PCR

    Membrane-Free Lateral Flow Assay with the Active Control of Fluid Transport for Ultrasensitive Cardiac Biomarker Detection

    Get PDF
    Membrane-based lateral flow immunoassays (LFAs) have been employed as early point-of-care (POC) testing tools in clinical settings. However, the varying membrane properties, uncontrollable sample transport in LFAs, visual readout, and required large sample volumes have been major limiting factors in realizing needed sensitivity and desirable precise quantification. Addressing these challenges, we designed a membrane-free system in which the desirable three-dimensional (3D) structure of the detection zone is imitated and used a small pump for fluid flow and fluorescence as readout, all the while maintaining a one-step assay protocol. A hydrogel-like protein–polyelectrolyte complex (PPC) within a polyelectrolyte multilayer (PEM) was developed as the test line by complexing polystreptavidin (pSA) with poly(diallyldimethylammonium chloride) (PDDA), which in turn was layered with poly(acrylic acid) (PAA) resulting in a superior 3D streptavidin-rich test line. Since the remainder of the microchannel remains material-free, good flow control is achieved, and with the total volume of 20 ÎŒL, 7.5-fold smaller sample volumes can be used in comparison to conventional LFAs. High sensitivity with desirable reproducibility and a 20 min total assay time were achieved for the detection of NT-proBNP in plasma with a dynamic range of 60–9000 pg·mL–1 and a limit of detection of 56 pg·mL–1 using probe antibody-modified fluorescence nanoparticles. While instrument-free visual detection is no longer possible, the developed lateral flow channel platform has the potential to dramatically expand the LFA applicability, as it overcomes the limitations of membrane-based immunoassays, ultimately improving the accuracy and reducing the sample volume so that finger-prick analyses can easily be done in a one-step assay for analytes present at very low concentrations

    NT-proBNP detection with a one-step magnetic lateral flow channel assaa

    Get PDF
    Point-of-care sensors targeting blood marker analysis must be designed to function with very small volumes since acquiring a blood sample through a simple, mostly pain-free finger prick dramatically limits the sample size and comforts the patient. Therefore, we explored the potential of converting a conventional lateral flow assay (LFA) for a significant biomarker into a self-contained and compact polymer channel-based LFA to minimize the sample volume while maintaining the analytical merits. Our primary objective was to eliminate the use of sample-absorbing fleece and membrane materials commonly present in LFAs. Simultaneously, we concentrated on developing a ready-to-deploy one-step LFA format, characterized by dried reagents, facilitating automation and precise sample transport through a pump control system. We targeted the detection of the heart failure biomarker NT-proBNP in only 15 ”L human whole blood and therefore implemented strategies that ensure highly sensitive detection. The biosensor combines streptavidin-functionalized magnetic beads (MNPs) as a 3D detection zone and fluorescence nanoparticles as signal labels in a sandwich-based immunoassay. Compared to the currently commercialized LFA, our biosensor demonstrates comparable analytical performance with only a tenth of the sample volume. With a detection limit of 43.1 pg∙mL−1 and a mean error of 18% (n ≄ 3), the biosensor offers high sensitivity and accuracy. The integration of all-dried long-term stable reagents further enhances the convenience and stability of the biosensor. This lateral flow channel platform represents a promising advancement in point-of-care diagnostics for heart failure biomarkers, offering a user-friendly and sensitive platform for rapid and reliable testing with low finger-prick blood sample volumes

    Multiplexed electrochemical liposomes applied to the detection of nucleic acids for Influenza A, Influenza B and SARS-CoV-2

    Get PDF
    Multiplexing is a relevant strategy for biosensors to improve accuracy and decision-making due to the increased amount of simultaneously obtained information. Liposomes offer unique benefits for label-based multiplexing since a variety of different marker molecules can be encapsulated, leading to intrinsic signal amplification and enabling a variety of detection formats. We successfully developed an electrochemical (EC) liposome-based platform technology for the simultaneous detection of at least three analytes by studying parameters to ensure specific and sensitive bioassay performance. Influenza A and B and SARS-CoV-2 sequences served as model system in a standard sandwich hybridization assay. Studies included encapsulants, probe distribution on liposomes and capture beads, assay setup and interferences between liposomes to also ensure a generalization of the platform. Ruthenium hexamine(III), potassium hexacyanoferrate(II) and m-carboxy luminol, when encapsulated separately into a liposome, provided desirable long-term stability of at least 12 months and no cross-signals between liposomes. Through the optimization process, low limits of detections of 1.6 nmol L−1, 125 pmol L−1 and 130 pmol L−1, respectively, were achieved in a multiplexed assay setup, which were similar to singleplex assays. Non-specific interactions were limited to 25.1%, 7.6% and 7.5%, respectively, through sequential liposome incubations and singleplex capture bead designs. Here, ruthenium hexamine liposomes had only mediocre performance so that low overall signal strength translated into higher LODs and worse specificity. A different marker such as ferroin may be an option in the future. The identification of further electrochemical markers will provide new opportunities for liposomes to function as multiplex, orthogonal or internal standard labels in electrochemical bioassays

    Cationic liposomes for generic signal amplification strategies in bioassays

    Get PDF
    Liposomes have been widely applied in bioanalytical assays. Most liposomes used bare negative charges to prevent non-specific binding and increase colloidal stability. Here, in contrast, highly stable, positively charged liposomes entrapping the fluorescent dye sulforhodamine B (SRB) were developed to serve as a secondary, non-specific label, and signal amplification tool in bioanalytical systems by exploiting their electrostatic interaction with negatively charged vesicles, surfaces, and microorganisms. The cationic liposomes were optimized for long-term stability (> 5 months) and high dye entrapment yield. Their capability as secondary, non-specific labels was first successfully proven through electrostatic interactions of cationic and anionic liposomes using dynamic light scattering, and then in a bioassay with fluorescence detection leading to an enhancement factor of 8.5 without any additional surface blocking steps. Moreover, the cationic liposomes bound efficiently to anionic magnetic beads were stable throughout magnetic separation procedures and could hence serve directly as labels in magnetic separation and purification strategies. Finally, the electrostatic interaction was exploited for the direct, simple, non-specific labeling of gram-negative bacteria. Isolated Escherichia coli cells were chosen as models and direct detection was demonstrated via fluorescent and chemiluminescent liposomes. Thus, these cationic liposomes can be used as generic labels for the development of ultrasensitive bioassays based on electrostatic interaction without the need for additional expensive recognition units like antibodies, where desired specificity is already afforded through other strategies

    Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells

    Get PDF
    Photodynamic therapy (PDT) is a well-established treatment of cancer in which cell toxic reactive oxygen species, including singlet oxygen (1O2), are produced by a photosensitiser drug following irradiation of a specific wavelength. Visible light is commonly used as the excitation source in PDT, although these wavelengths do have limited tissue penetration. In this research, upconverting nanoparticles (UCNPs) functionalised with the photosensitiser Rose Bengal (RB) have been designed and synthesised for PDT of breast cancer cells. The use of UCNPs shifts the required excitation wavelength for the production of 1O2 to near infrared light (NIR) thus allowing deeper tissue penetration. The system was designed to maximise the production of 1O2via efficient Förster resonance energy transfer (FRET) from the UCNPs to the photosensitiser. Highly luminescent NaYF4:Yb,Er,Gd@NaYF4 core–shell UCNPs were synthesised that exhibited two main anti-Stokes emission bands at 541 and 652 nm following 980 nm irradiation. RB was chosen as the photosensitiser since its absorption band overlaps with the green emission of the UCNPs. To achieve efficient energy transfer from the nanoparticles to the photosensitiser, the functionalised UCNPs included a short L-lysine linker to attach the RB to the nanocore yielding RB-lysine functionalised UCNPs. The efficient FRET from the UCNPs to the RB was confirmed by luminescence lifetime measurements. The light emitted by the UCNPs at 541 nm, following excitation at 980 nm, generates the 1O2via the RB. Multi-photon and confocal laser scanning microscopies confirmed the internalisation of the RB-lysine-UCNPs by SK-BR-3 breast cancer cells. Cell viability studies revealed that the RB-lysine-UCNPs induced low dark toxicity in cells prior to PDT treatment. Importantly, following irradiation at 980 nm, high levels of cell death were observed in cells loaded with the RB-lysine-UCNPs. Cell death following PDT treatment was also confirmed using propidium iodide and confocal microscopy. The high drug loading capacity (160 RB/nanoparticle) of the UCNPs, the efficient FRET from the UCNPs to the photosensitiser, the high level of accumulation inside the cells and their PDT cell kill suggest that the RB-lysine-UCNPs are promising for NIR PDT and hence suitable for the treatment of deep-lying cancer tumours
    • 

    corecore