265 research outputs found
Coal gasification by indirect heating in a single moving bed reactor: Process development & simulation
In this work, the development and simulation of a new coal gasification process with indirect heat supply is performed. In this way, the need of pure oxygen production as in a conventional gasification process is avoided. The feasibility and energetic self-sufficiency of the proposed processes are addressed. To avoid the need of Air Separation Unit, the heat required by gasification reactions is supplied by the combustion flue gases, and transferred to the reacting mixture through a bayonet heat exchanger installed inside the gasifier. Two alternatives for the flue gas generation have been investigated and compared. The proposed processes are modeled using chemical kinetics validated on experimental gasification data by means of a standard process simulator (Aspen PlusTM), integrated with a spreadsheet for the modeling of a special type of heat exchanger. Simulation results are presented and discussed for proposed integrated process schemes. It is shown that they do not need external energy supply and ensure overall efficiencies comparable to conventional processes while producing syngas with lower content of carbon dioxide
Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion
The mechanism of skeletal myoblast fusion is not well understood. We show that endogenous nitric oxide (NO) generation is required for myoblast fusion both in embryonic myoblasts and in satellite cells. The effect of NO is concentration and time dependent, being evident only at the onset of differentiation, and direct on the fusion process itself. The action of NO is mediated through a tightly regulated activation of guanylate cyclase and generation of cyclic guanosine monophosphate (cGMP), so much so that deregulation of cGMP signaling leads to a fusion-induced hypertrophy of satellite-derived myotubes and embryonic muscles, and to the acquisition of fusion competence by myogenic precursors in the presomitic mesoderm. NO and cGMP induce expression of follistatin, and this secreted protein mediates their action in myogenesis. These results establish a hitherto unappreciated role of NO and cGMP in regulating myoblast fusion and elucidate their mechanism of action, providing a direct link with follistatin, which is a key player in myogenesis
Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation
Regeneration of muscle fibers that are lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. An important cell type involved in muscle regeneration is the satellite cell. Necdin is a protein expressed in satellite cellâderived myogenic precursors during perinatal growth. However, its function in myogenesis is not known. We compare transgenic mice that overexpress necdin in skeletal muscle with both wild-type and necdin null mice. After muscle injury the necdin null mice show a considerable defect in muscle healing, whereas mice that overexpress necdin show a substantial increase in myofiber regeneration. We also find that in muscle, necdin increases myogenin expression, accelerates differentiation, and counteracts myoblast apoptosis. Collectively, these data clarify the function and mechanism of necdin in skeletal muscle and show the importance of necdin in muscle regeneration
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt⟠, W+bb⟠and W+cc⟠is studied in the forward region of protonâproton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fbâ1 . The W bosons are reconstructed in the decays WââÎœ , where â denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
Study of eta-eta ' mixing from measurement of B-(s)(0) -> J/psi eta((')) decay rates
A study of B and B-s(0) meson decays into J/psi eta and J/psi eta' final states is performed using a data set of proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, collected by the LCHb experiment and corresponding to 3.0 fb(-1) of integrated luminosity. The decay B-0 -> J/psi eta' is observed for the first time. The following ratios of branching fractions are measured: B(B-0 -> J psi eta')/B(B-s(0) -> J psi eta') = (2.28 +/- 0.65 (stat) +/- 0.010 (syst) +/- 0.13 (f(s)/f(d)) x 10(-2) , B(B-0 -> J psi eta')/B(B-s(0) -> J psi eta') = (1.85 +/- 0.65 (stat) +/- 0.09 (syst) +/- 0.11 (f(s)/f(d)) x 10(-2) where the third uncertainty is related to the present knowledge of f(s)/f(d), the ratio between the probabilities for a b quark to form a B-s(0) or a B-0 meson. The branching fraction ratios are used to determine the parameters of eta-eta' meson mixing. In addition, the first evidence for the decay B-s(0) -> psi(2S)' is reported, and the relative branching fraction is measured, B(B-s(0) -> psi(2S)eta')/B(B-s(0) -> J psi eta') = (38.7 +/- 9.0 (stat) +/- 1.3 (syst) +/- 0.9(B)) x 10(-2), where the third uncertainty is due to the limited knowledge of the branching fractions of J/psi and psi(2S) mesons
Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state
A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation.A search for the rare decays Bs0âÏ+ÏâÎŒ+ÎŒâ and B0âÏ+ÏâÎŒ+ÎŒâ is performed in a data set corresponding to an integrated luminosity of 3.0 fbâ1 collected by the LHCb detector in protonâproton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5â1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0âÏ+ÏâÎŒ+ÎŒâ and the first evidence of the decay B0âÏ+ÏâÎŒ+ÎŒâ are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0âÏ+ÏâÎŒ+ÎŒâ)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))Ă10â8 and B(B0âÏ+ÏâÎŒ+ÎŒâ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))Ă10â8 , where the third uncertainty is due to the branching fraction of the decay B0âJ/Ï(âÎŒ+ÎŒâ)Kâ(892)0(âK+Ïâ) , used as a normalisation.A search for the rare decays Bs0âÏ+ÏâÎŒ+ÎŒâ and B0âÏ+ÏâÎŒ+ÎŒâ is performed in a data set corresponding to an integrated luminosity of 3.0 fbâ1 collected by the LHCb detector in protonâproton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5â1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0âÏ+ÏâÎŒ+ÎŒâ and the first evidence of the decay B0âÏ+ÏâÎŒ+ÎŒâ are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0âÏ+ÏâÎŒ+ÎŒâ)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))Ă10â8 and B(B0âÏ+ÏâÎŒ+ÎŒâ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))Ă10â8 , where the third uncertainty is due to the branching fraction of the decay B0âJ/Ï(âÎŒ+ÎŒâ)Kâ(892)0(âK+Ïâ) , used as a normalisation.A search for the rare decays and is performed in a data set corresponding to an integrated luminosity of 3.0 fb collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/ and with muon pairs that do not originate from a resonance are considered. The first observation of the decay and the first evidence of the decay are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be and , where the third uncertainty is due to the branching fraction of the decay , used as a normalisation
Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region
An angular analysis of the decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared () interval between 0.002 and 1.120. The angular observables and which are related to the polarisation and to the lepton forward-backward asymmetry, are measured to be and , where the first uncertainty is statistical and the second systematic. The angular observables and which are sensitive to the photon polarisation in this range, are found to be and . The results are consistent with Standard Model predictions.An angular analysis of the B â K^{*}^{0} e e decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q) interval between 0.002 and 1.120 GeV /c. The angular observables F and A which are related to the K^{*}^{0} polarisation and to the lepton forward-backward asymmetry, are measured to be F = 0.16 ± 0.06 ± 0.03 and A â=â0.10â±â0.18â±â0.05, where the first uncertainty is statistical and the second systematic. The angular observables A and A which are sensitive to the photon polarisation in this q range, are found to be A â=âââ0.23â±â0.23â±â0.05 and A â=â0.14â±â0.22â±â0.05. The results are consistent with Standard Model predictions.An angular analysis of the decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared () interval between 0.002 and 1.120. The angular observables and which are related to the polarisation and to the lepton forward-backward asymmetry, are measured to be and , where the first uncertainty is statistical and the second systematic. The angular observables and which are sensitive to the photon polarisation in this range, are found to be and . The results are consistent with Standard Model predictions
Observation of the B0 â Ï0Ï0 decay from an amplitude analysis of B0 â (Ï+Ïâ)(Ï+Ïâ) decays
Protonâproton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fbâ1 , are analysed to search for the charmless B0âÏ0Ï0 decay. More than 600 B0â(Ï+Ïâ)(Ï+Ïâ) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0âÏ0Ï0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0âÏ0Ï0 decays yielding a longitudinally polarised final state is measured to be fL=0.745â0.058+0.048(stat)±0.034(syst) . The B0âÏ0Ï0 branching fraction, using the B0âÏKâ(892)0 decay as reference, is also reported as B(B0âÏ0Ï0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))Ă10â6
Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar
The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c.The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range . The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy using data corresponding to an integrated luminosity of 0.7Â fb , and at using 2.0Â fb . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be .The production of the state in proton-proton collisions is probed via its decay to the final state with the LHCb detector, in the rapidity range GeV/c. The cross-section for prompt production of mesons relative to the prompt cross-section is measured, for the first time, to be at a centre-of-mass energy TeV using data corresponding to an integrated luminosity of 0.7 fb, and at TeV using 2.0 fb. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the and decays to the final state. In addition, the inclusive branching fraction of -hadron decays into mesons is measured, for the first time, to be , where the third uncertainty includes also the uncertainty on the inclusive branching fraction from -hadron decays. The difference between the and meson masses is determined to be MeV/c
Search for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-)
A search for the lepton flavour violating decay is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, .A search for the lepton flavour violating decay Ï â ÎŒ ÎŒ ÎŒ is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, .A search for the lepton flavour violating decay is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of of proton-proton collisions at a centre-of-mass energy of and at . No evidence is found for a signal, and a limit is set at confidence level on the branching fraction,
- âŠ