315 research outputs found

    Effects of fungicide application timing and cultivar resistance on Fusarium head blight and deoxynivalenol in winter wheat

    Get PDF
    Fusarium graminearum causes Fusarium head blight (FHB) in wheat. FHB reduces yield and quality and contaminates grain with the mycotoxin deoxynivalenol (DON). Effective management strategies are needed. The objectives of this research were to 1) Determine the effect of fungicide application timing at anthesis (the standard timing) and 6 and 12 days later on FHB and DON in the winter wheat cultivars Overley (susceptible) and Overland (moderately resistant) and 2) Compare the effects of a triazole and a strobilurin fungicide on FHB and DON in Overley and Overland. In 2015 two field trials (irrigated and rain-fed) were conducted in Nebraska, USA. The triazole Prosaro (prothioconazole + tebuconazole) and the strobilurin Headline (pyraclostrobin) were applied with a CO2-powered backpack sprayer at anthesis and 6 and 12 days later. A split plot design in randomized complete blocks with 4 replications was used. Main plots were cultivars and subplots were fungicide treatments. FHB index and DON were significantly (P \u3c 0.05) lower in Overland than in Overley. The window of fungicide application to control FHB and DON was widened from anthesis to 6 days later without loss of efficacy. Headline was less effective than Prosaro in controlling FHB and DON. Moderate resistance combined with a triazole fungicide most effectively reduced FHB and DON. The results indicate a wider fungicide application window and the effectiveness of combining resistance with a triazole fungicide

    Lentiviral Vector Delivery of Human Interleukin-7 (hIL-7) to Human Immune System (HIS) Mice Expands T Lymphocyte Populations

    Get PDF
    Genetically modified mice carrying engrafted human tissues provide useful models to study human cell biology in physiologically relevant contexts. However, there remain several obstacles limiting the compatibility of human cells within their mouse hosts. Among these is inadequate cross-reactvitiy between certain mouse cytokines and human cellular receptors, depriving the graft of important survival and growth signals. To circumvent this problem, we utilized a lentivirus-based delivery system to express physiologically relevant levels of human interleukin-7 (hIL-7) in Rag2-/-Ξ³c-/- mice following a single intravenous injection. hIL-7 promoted homeostatic proliferation of both adoptively transferred and endogenously generated T-cells in Rag2-/-Ξ³c-/- Human Immune System (HIS) mice. Interestingly, we found that hIL-7 increased T lymphocyte numbers in the spleens of HIV infected HIS mice without affecting viral load. Taken together, our study unveils a versatile approach to deliver human cytokines to HIS mice, to both improve engraftment and determine the impact of cytokines on human diseases

    Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals.

    Get PDF
    BackgroundThe SCID-hu Thy/Liv mouse model of HIV-1 infection is a useful platform for the preclinical evaluation of antiviral efficacy in vivo. We performed this study to validate the model with representatives of all four classes of licensed antiretrovirals.Methodology/principal findingsEndpoint analyses for quantification of Thy/Liv implant viral load included ELISA for cell-associated p24, branched DNA assay for HIV-1 RNA, and detection of infected thymocytes by intracellular staining for Gag-p24. Antiviral protection from HIV-1-mediated thymocyte depletion was assessed by multicolor flow cytometric analysis of thymocyte subpopulations based on surface expression of CD3, CD4, and CD8. These mice can be productively infected with molecular clones of HIV-1 (e.g., the X4 clone NL4-3) as well as with primary R5 and R5X4 isolates. To determine whether results in this model are concordant with those found in humans, we performed direct comparisons of two drugs in the same class, each of which has known potency and dosing levels in humans. Here we show that second-generation antiretrovirals were, as expected, more potent than their first-generation predecessors: emtricitabine was more potent than lamivudine, efavirenz was more potent than nevirapine, and atazanavir was more potent than indinavir. After interspecies pharmacodynamic scaling, the dose ranges found to inhibit viral replication in the SCID-hu Thy/Liv mouse were similar to those used in humans. Moreover, HIV-1 replication in these mice was genetically stable; treatment of the mice with lamivudine did not result in the M184V substitution in reverse transcriptase, and the multidrug-resistant NY index case HIV-1 retained its drug-resistance substitutions.ConclusionGiven the fidelity of such comparisons, we conclude that this highly reproducible mouse model is likely to predict clinical antiviral efficacy in humans

    Molecular Sites for the Positive Allosteric Modulation of Glycine Receptors by Endocannabinoids

    Get PDF
    Glycine receptors (GlyRs) are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs) have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA) are positive modulators of Ξ±1, Ξ±2 and Ξ±3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly) potentiate Ξ±1 GlyRs but inhibit Ξ±2 and Ξ±3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM) region 2 and intracellular lysine 385 determine the positive modulation of Ξ±1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in Ξ±2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of Ξ±1 GlyRs, without affecting inhibition of Ξ±2 and Ξ±3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain

    A Topical Microbicide Gel Formulation of CCR5 Antagonist Maraviroc Prevents HIV-1 Vaginal Transmission in Humanized RAG-hu Mice

    Get PDF
    For prevention of HIV infection many currently licensed anti-HIV drugs and new ones in the pipeline show potential as topically applied microbicides. While macaque models have been the gold standard for in vivo microbicide testing, they are expensive and sufficient numbers are not available. Therefore, a small animal model that facilitates rapid evaluation of potential candidates for their preliminary efficacy is urgently needed in the microbicide field. We previously demonstrated that RAG-hu humanized mouse model permits HIV-1 mucosal transmission via both vaginal and rectal routes and that oral pre-exposure chemo-prophylactic strategies could be tested in this system. Here in these proof-of-concept studies, we extended this system for topical microbicide testing using HIV-1 as the challenge virus. Maraviroc, a clinically approved CCR5 inhibitor drug for HIV treatment, was formulated as a microbicide gel at 5 mM concentration in 2.2% hydroxyl ethyl cellulose. Female RAG-hu mice were challenged vaginally with HIV-1 an hour after intravaginal application of the maraviroc gel. Our results showed that maraviroc gel treated mice were fully protected against vaginal HIV-1 challenge in contrast to placebo gel treated mice which all became infected. These findings highlight the utility of the humanized mouse models for microbicide testing and, together with the recent data from macaque studies, suggest that maraviroc is a promising candidate for future microbicide clinical trials in the field

    Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer

    Get PDF
    Two subtypes of thrombospondin (TSP-1 and TSP-2) have inhibitory roles in angiogenesis in vitro, although the biological significance of these TSP isoforms has not been determined in vivo. We examined TSP-1 and TSP-2 gene expression by reverse transcription polymerase chain reaction (RT-PCR) analysis in 61 colon cancers. Thirty-eight of these 61 colon cancers were positive for TSP-2 expression and showed hepatic metastasis at a significantly lower incidence than those without TSP-2 expression (P = 0.02). TSP-2 expression was significantly associated with M0 stage in these colon cancers (P = 0.03), whereas TSP-1 expression showed no apparent correlation with these factors. The colon cancer patients with TSP-2 expression showed a significantly low frequency of liver metastasis correlated with the cell-associated isoform of vascular endothelial growth factor (VEGF-189) (P = 0.0006). Vascularity was estimated by CD34 staining, and TSP-2(–)/VEGF-189(+) colon cancers showed significantly increased vessel counts and density in the stroma (P < 0.0001). TSP-2(–)/VEGF-189(+) colon cancer patients also showed significantly poorer prognosis compared with those with TSP-2(+) / VEGF-189(–) (P = 0.0014). These results suggest that colon cancer metastasis is critically determined by angiogenesis resulting from the balance between the angioinhibitory factor TSP-2 and angiogenic factor VEGF-189. Β© 1999 Cancer Research Campaig

    Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae

    Get PDF
    The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 Β΅g/Lβˆ’1) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators

    Humanized Rag1βˆ’/βˆ’Ξ³cβˆ’/βˆ’ Mice Support Multilineage Hematopoiesis and Are Susceptible to HIV-1 Infection via Systemic and Vaginal Routes

    Get PDF
    Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2βˆ’/βˆ’Ξ³cβˆ’/βˆ’, NOD/SCID, NOD/SCIDΞ³cβˆ’/βˆ’ and NOD/SCIDΞ²2mβˆ’/βˆ’ strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1βˆ’/βˆ’Ξ³βˆ’/βˆ’ strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2βˆ’/βˆ’Ξ³cβˆ’/βˆ’ mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1βˆ’/βˆ’Ξ³cβˆ’/βˆ’ mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting

    Placental transfusion: a review

    Get PDF
    Recently there have been a number of studies and presentations on the importance of providing a placental transfusion to the newborn. Early cord clamping is an avoidable, unphysiologic intervention that prevents the natural process of placental transfusion. However, placental transfusion, although simple in concept, is affected by multiple factors, is not always straightforward to implement, and can be performed using different methods, making this basic procedure important to discuss. Here, we review three placental transfusion techniques: delayed cord clamping, intact umbilical cord milking and cut-umbilical cord milking, and the evidence in term and preterm newborns supporting this practice. We will also review several factors that influence placental transfusion, and discuss perceived risks versus benefits of this procedure. Finally, we will provide key straightforward concepts and implementation strategies to ensure that placental-to-newborn transfusion can become routine practice at any institution
    • …
    corecore