240 research outputs found

    Influence of Structural Stiffness on Ratcheting Convection Cells of Granular Soil under Cyclic Lateral Loading

    Get PDF
    In granular soils, long-term cyclically loaded structures can lead to an accumulation of irreversible strain by forming closed convective cells in the upper layer of the bedding. The size of the convective cell, its formation and grain migration inside this closed volume have been studied with reference to different stiffness of the embedded structure and different maximum force amplitudes applied at the head of the structure. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in a dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Furthermore, the ratcheting convective cell was also simulated with DEM with the aim of extracting some micromechanical information. The main results regarded the different development, shape and size of the convection cell and the surface settlements

    Impact of Neutron Decay Experiments on non-Standard Model Physics

    Full text link
    This paper gives a brief overview of the present and expected future limits on physics beyond the Standard Model (SM) from neutron beta decay, which is described by two parameters only within the SM. Since more than two observables are accessible, the problem is over-determined. Thus, precise measurements of correlations in neutron decay can be used to study the SM as well to search for evidence of possible extensions to it. Of particular interest in this context are the search for right-handed currents or for scalar and tensor interactions. Precision measurements of neutron decay observables address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. Free neutron decay is therefore a very active field, with a number of new measurements underway worldwide. We present the impact of recent developments.Comment: 13 pages, 6 figures; Proceedings of the 5th International BEYOND 2010 Conference, Cape Town, South Africa (2010), World Scientific, accepted for publication; Corrected typo

    A contact problem aplication for the local behaviour of soil pile interaction

    Get PDF
    In geotechnical engineering, the main parameter for the performance of structures such as reinforced walls or deep foundations is often the shaft bearing capacity. In numerical analysis, important advancements have been made on studying the behavior of the soil and the retaining structures separately. The performance of many geotechnical foundation systems depends on the shear behavior at the soil structure interface. For deep foundations, the main component that affects friction is the horizontal earth pressure. When a pile is getting axially loaded, the soil grain network at the interface, starts to move and rearrange. In conditions of axial cyclic loading a contractive behavior of soil can generally be observed as in [1] and [2]. This can be explained by the progressive densification and relaxation of the soil under cyclic shear at the soil pile interface, as well as the local refinement of the grain distribution by grain breakage and rearrangements. As the soil contracts and decreases in volume, the normal stress around the pile surface decreases and the soil pile friction degrades. This can lead to failure of the whole geotechnical foundation system. The purpose of the work presented in this paper is to analyze locally (at the element level) the contact behavior of a soil-pile contact problem. Therefore, a 2D shear test is modeled using the Finite Element Method. The formulation of a 4 nodded zero-thickness interface element of Beer [3] is chosen with a linear interpolation function. Four constitutive contact models adapted for contact problems have been implemented. The simple Mohr-Coulomb [4] and Clough and Duncan [5] models were chosen initially, due to the ease of implementation and few number of parameters needed. After, more complicated models in the framework of elasto-plasticity such as: Lashkari [6] and Mortara [7] were implemented for the first time into the finite element code of the shear test problem. They include other phenomena such as: relative density of soil, the stress level and sand dilatancy. From the results the relation between shear displacement and shear stress has been deduced. Finally, a discussion of the advantages and the drawbacks during computation of each model is given at the end

    Constraints on spin-dependent short-range interactions using gravitational quantum levels of ultracold neutrons

    Full text link
    In this paper, we discuss a possibility to improve constraints on spin-dependent short-range interactions in the range of 1 - 200 micrometer significantly. For such interactions, our constraints are without competition at the moment. They were obtained through the observation of gravitationally bound states of ultracold neutrons. We are going to improve these constraints by about three orders of magnitude in a dedicated experiment with polarized neutrons using the next-generation spectrometer GRANIT.Comment: 5 pages, 4 figures, accepted for publication in the Proceedings of the International Workshop on Particle Physics with Cold Neutrons, Grenoble, May 2008, to be published in Nucl. Instr. and Meth.

    Measuring the proton spectrum in neutron decay - latest results with aSPECT

    Full text link
    The retardation spectrometer aSPECT was built to measure the shape of the proton spectrum in free neutron decay with high precision. This allows us to determine the antineutrino electron angular correlation coefficient a. We aim for a precision more than one order of magnitude better than the present best value, which is Delta_a /a = 5%. In a recent beam time performed at the Institut Laue-Langevin during April / May 2008 we reached a statistical accuracy of about 2% per 24 hours measurement time. Several systematic effects were investigated experimentally. We expect the total relative uncertainty to be well below 5%.Comment: Accepted for publication in the Conference Proceedings of the International Workshop on Particle Physics with Slow Neutrons 2008 held at the ILL, France. To be published in Nuclear Instruments and Methods in Physics Research, Section

    A New Constraint for the Coupling of Axion-like particles to Matter via Ultra-Cold Neutron Gravitational Experiments

    Get PDF
    We present a new constraint for the axion monopole-dipole coupling in the range of 1 micrometer to a few millimeters, previously unavailable for experimental study. The constraint was obtained using our recent results on the observation of neutron quantum states in the Earth's gravitational field. We exploit the ultimate sensitivity of ultra-cold neutrons (UCN) in the lowest gravitational states above a material surface to any additional interaction between the UCN and the matter, if the characteristic interaction range is within the mentioned domain. In particular, we find that the upper limit for the axion monopole-dipole coupling constant is (g_p g_s)/(\hbar c)<2 x 10^{-15} for the axion mass in the ``promising'' axion mass region of ~1 meV.Comment: 5 pages 3 figure

    Magnetic-field measurement and analysis for the Muon g-2 Experiment at Fermilab

    Get PDF
    The Fermi National Accelerator Laboratory (FNAL) Muon g-2 Experiment has measured the anomalous precession frequency aμ(gμ-2)/2 of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7C. The measured field is weighted by the muon distribution resulting in ωp′, the denominator in the ratio ωa/ωp′ that together with known fundamental constants yields aμ. The reported uncertainty on ωp′ for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb

    Frequency shifts in gravitational resonance spectroscopy

    Full text link
    Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments
    corecore