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Abstract: In geotechnical engineering, the main parameter for the performance of structures 
such as reinforced walls or deep foundations is often the shaft bearing capacity. In numerical 
analysis, important advancements have been made on studying the behavior of the soil and the 
retaining structures separately. 
    The performance of many geotechnical foundation systems depends on the shear behavior 
at the soil structure interface. For deep foundations, the main component that affects friction 
is the horizontal earth pressure. When a pile is getting axially loaded, the soil grain network at 
the interface, starts to move and rearrange. In conditions of axial cyclic loading a contractive 
behavior of soil can generally be observed as in [1] and [2]. This can be explained by the 
progressive densification and relaxation of the soil under cyclic shear at the soil pile interface, 
as well as the local refinement of the grain distribution by grain breakage and rearrangements. 
As the soil contracts and decreases in volume, the normal stress around the pile surface 
decreases and the soil pile friction degrades. This can lead to failure of the whole geotechnical 
foundation system.  
    The purpose of the work presented in this paper is to analyze locally (at the element level) 
the contact behavior of a soil-pile contact problem. Therefore, a 2D shear test is modeled 
using the Finite Element Method. The formulation of a 4 nodded zero-thickness interface 
element of Beer [3] is chosen with a linear interpolation function. Four constitutive contact 
models adapted for contact problems have been implemented. The simple Mohr-Coulomb [4] 
and Clough and Duncan [5] models were chosen initially, due to the ease of implementation 
and few number of parameters needed. After, more complicated models in the framework of 
elasto-plasticity such as: Lashkari [6] and Mortara [7] were implemented for the first time into 
the finite element code of the shear test problem. They include other phenomena such as: 
relative density of soil, the stress level and sand dilatancy. From the results the relation 
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between shear displacement and shear stress has been deduced. Finally, a discussion of the 
advantages and the drawbacks during computation of each model is given at the end.  
 

1 INTRODUCTION 
    In the last century, the number of geotechnical structures has increased significantly. 
Structures as: reinforced embankments, anchors and deep foundations (offshore and onshore) 
are becoming more and more present and sophisticated in the civil engineering domain. One 
of the main parameters of these elements is the shaft bearing capacity [8]. A significant 
component of the shaft bearing capacity is the shear resistance. 
    Important advancements have been made on modelling the behavior of the soil and the 
retaining structures (pile, wall, anchors) separately. The zone in which the soil is attached to a 
structure is called the interface or contact zone. Many issues and questions arise when it 
comes to the contact zone between soil and geotechnical element (ex: deep foundation). 
    The major used numerical technique for modelling the contact behavior in geotechnical 
engineering is the zero-thickness interface element (e.g. Beer [9] and Goodman [3]). The 
contact element itself, according to the current deformation and loading, can govern four 
different states: stick, slip, de-bonding (gap opening) and re-bonding.  
    The shear behavior of this contact zone is complex due to the composition of materials with 
a very high stiffness (structure) and in comparison, a very low stiffness (soil). A lot of 
different experimental studies have indicated the importance of this narrow zone for the 
global load displacement behavior of geotechnical structures (e.g. for piles [10] and [11]).  
The before mentioned importance is modelled since a long time using elastoplastic models as 
the simple Mohr-Coulomb model [4] or more recent elasto-plastic models e.g. Lashkari [6] 
and Liu [12]. Beside the classical elasto-plastic, generalized plasticity models Liu [13] or 
hypoplastic models by Stutz et al [14] and [15] exist.  
     In this paper, the focus was given to the local behavior at the contact zone. An 
implementation of four different contact constitutive models, two of them for the first time, 
into a zero-thickness interface element implementation is shown. Because advanced models 
are seldom implemented into finite-element codes and used for pile-soil interaction analysis. 
This issue is overcome into this publication. To demonstrate the implementation, a direct 
interface shear test is modelled using the finite element method. By the results of this direct 
interface shear test it is shown that the models can be implemented into zero-thickness 
interface elements even if they have different formulations than the mechanical model used by 
Goodman [9]. 

 
2 CONSTITUTIVE MODELS FOR CONTACT PROBLEMS 
When it comes to soil modelling many different constitutive models have been used the theories 
of elasto-plasticity, hyper-elasticity, hypo-plasticity, generalized plasticity. The majority of this 
constitutive frameworks have been used for modelling of the interface behavior. All constitutive 
models treated in the paper are in the framework of elasto-plasticity. The properties and 
parameters of each model are given in the following subsections. 
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  a 

                               a)                                                      b)                                                            c)     

Figure 1: Shear stress vs. shear strain relation for a) Mohr-Coulomb, b) Hyperbolic, c) Mortara and Lashkari 

2.1 Mohr-Coulomb model 
    Mohr-Coulomb model was introduced in 1821 by [4] and since then, further improvement 
or adaptations for different problems have been made. The formulation of the Mohr-Coulomb 
model for zero-thickness interface models from [16] is used. As it is a linear-elastic perfectly-
plastic model (Figure 1a), after the elastic stress limit is exceed no additional shear stresses 
are possible. The yield function 𝑓𝑓 is defined as: 

 𝑓𝑓 = |𝜏𝜏| + 𝜎𝜎𝑛𝑛 tan 𝜑𝜑 − 𝑐𝑐 
 

(1) 

    Where 𝜏𝜏 is the shear stress, 𝜎𝜎𝑛𝑛 is normal stress, 𝜑𝜑 is friction angle at interface, and 𝑐𝑐 the 
cohesion. Vanlangen [4] uses in his model non-associated plasticity. Therefore, the plastic 
potential g is defined as:  
 𝑔𝑔 = |𝜏𝜏| + 𝜎𝜎𝑛𝑛 tan 𝜓𝜓   (2) 

Where 𝜓𝜓 is the dilatation angle. The incremental constitutive relation is obtained as: 
 �̇�𝑡 = 𝐷𝐷𝑒𝑒𝑒𝑒𝑢𝑢𝑒𝑒 ̇                 𝐷𝐷𝑒𝑒𝑒𝑒 = 𝐷𝐷𝑒𝑒 − 𝛼𝛼

𝑑𝑑 𝐷𝐷𝑒𝑒 𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑛𝑛

𝜕𝜕𝜕𝜕
𝜎𝜎𝑛𝑛

𝑇𝑇
𝐷𝐷𝑒𝑒   (3) 

    Where �̇�𝑡 denotes the rate of traction vector, 𝐷𝐷𝑒𝑒𝑒𝑒is the elasto-plastic matrix, 𝛼𝛼 indicates 
plasticity if (𝛼𝛼 =1) or elastic conditions (𝛼𝛼 =0).  

4.2 Hyperbolic model 
 Clough and Duncan [5] use the nonlinear elasticity model (Figure 1b) from the nonlinear soil 
model of [4]. To model the non-linear hardening behavior of the interface zone in a Goodman 
[9] type element. The hyperbola is approximated using some shear test data. The empirical 
derived equation for the interface behavior is: 
 
 
 
      
 
Here, 𝜏𝜏 is the shear stress, 𝑎𝑎𝑟𝑟, 𝑏𝑏𝑟𝑟= fitting parameters of hyperbola, 𝑢𝑢𝑠𝑠 = the interface shear 
displacement.  

𝜏𝜏 = 𝑢𝑢𝑠𝑠
𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟 ∙ 𝑢𝑢𝑠𝑠

    (4) 
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    The model is based on empirical equation converted by linearization to estimate the 
hyperbolic parameters. Then the straight lines are fitted to the experimental data at the points 
where the values of shear stress are 70% - 90% of the maximum values. 
    The shear stiffness depends on normal stress and it is updated at every loop increment. 

 
 

𝐾𝐾𝑠𝑠 = 𝐾𝐾𝐼𝐼𝛾𝛾𝑤𝑤 (𝜎𝜎𝑛𝑛
𝑝𝑝𝑎𝑎

)
𝑛𝑛𝑛𝑛𝑛𝑛

(1 −
𝑅𝑅𝑓𝑓𝜏𝜏

𝜎𝜎𝑛𝑛 tan 𝜑𝜑)
2
 

  (5) 

The shear stress is then calculated as 𝜏𝜏 = Ks*us  and the normal stress 𝜎𝜎𝑛𝑛 is constant in this 
model formulation.  

4.3 Lashkari model 
    Here the elasto-plastic model (Figure 1c) according to Lashkari [6] is introduced. The 
constitutive model relates stress rate vector [�̇�𝜎] to the velocity vector [∆̇] under monotonic 
shearing. In addition, the model is state dependent and considers the state parameter from Been 
and Jeffries [17]. By this the parameter calibration is unique for a soil and can be modified to 
its different states (e.g. loose or dense).  
   The stress vector [𝜎𝜎] and the relative displacement vector [∆] are defined as: 

                         [𝜎𝜎] = [ 𝜏𝜏
𝜎𝜎𝑛𝑛

]       ;       [∆] = [𝑢𝑢
𝑣𝑣]       ;    [∆̇] = [∆̇]𝑒𝑒 + [∆̇]𝑝𝑝                                  (6) 

    Where u, v are the normal and shear displacement respectively. The relative velocity vector 
is composed out of the elastic and plastic component. For the elastic branch of the velocity 
vector, the following relation is adapted: 

 [�̇�𝜎] = 1
𝑡𝑡 [𝐷𝐷]𝑒𝑒[∆̇]𝑒𝑒

        (7) 

 
    Here t represents the thickness and [D]e is the elastic material matrix. An important 
parameter is the stress ratio 𝜂𝜂 = 𝜎𝜎𝑛𝑛

𝜏𝜏 . It is the main component of model for the yielding 
plasticity. In case the stress ratio is constant, the behavior remains elastic.  
   The yield function 𝑓𝑓 is defined as:  
 𝑓𝑓 = 𝜏𝜏 − 𝜂𝜂𝜎𝜎𝑛𝑛                    (8) 

    Finally, the elasto-plastic matrix is given as below: 

                                                [𝐷𝐷]𝑒𝑒𝑝𝑝 =  [𝐷𝐷]𝑒𝑒 − [𝐷𝐷]𝑒𝑒{𝑅𝑅}{𝑛𝑛}𝑇𝑇[𝐷𝐷]𝑒𝑒

𝐾𝐾𝑝𝑝+{𝑛𝑛}𝑇𝑇[𝐷𝐷]𝑒𝑒{𝑅𝑅}                                         (9) 

    Here, {𝑛𝑛} denotes the yield direction vector, {𝑅𝑅} is the direction of plastic velocity 
vector and 𝐾𝐾𝑝𝑝 represents the hardening modulus. For additional details of the model it is 
referred to Lashkari [6].  

4.4 Mortara Model 

The elasto-plastic model (Figure 1c) proposed by [7] is an interface constitutive model, 
which is based on mathematical plasticity formulations. The main advantage of this model is 
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that can be calibrated with CNL tests, and simulate both Constant Normal Load (CNL) and 
Constant Normal Stiffness (CNS) boundary conditions in good agreement. In the elasto-plastic 
theory the stress and strain relation would be: 

 
   The expression for [𝐷𝐷]𝑒𝑒𝑒𝑒 is given as: 
 [𝐷𝐷]𝑒𝑒𝑒𝑒= [𝐷𝐷]𝑒𝑒 − [𝐷𝐷]𝑒𝑒𝑚𝑚𝑀𝑀

𝐻𝐻+𝑛𝑛𝑇𝑇[𝐷𝐷]𝑒𝑒𝑚𝑚𝑀𝑀
   (11) 

     The component terms of [𝐷𝐷]𝑒𝑒𝑒𝑒are: 

[𝐷𝐷]𝑒𝑒 = [𝐾𝐾𝑠𝑠
𝑒𝑒 0

0 𝐾𝐾𝑛𝑛
𝑒𝑒]          𝑚𝑚𝑀𝑀 = [

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝑛𝑛

]                                 𝑛𝑛 = [
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝑛𝑛

]         𝐻𝐻 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥

𝑝𝑝            (12)                                                       

    Where [𝐷𝐷]𝑒𝑒is the elastic matrix,  𝐾𝐾𝑠𝑠
𝑒𝑒and 𝐾𝐾𝑛𝑛

𝑒𝑒 are the elastic shear and normal stiffness, 𝑚𝑚𝑀𝑀 
is the gradient of plastic potential, 𝑛𝑛 is the gradient of plastic surface and 𝐻𝐻 is the hardening 
modulus. The plastic function of the model was deriving assuming as hardening parameter the 

normalized shear relative displacement [�̇�𝑤𝑛𝑛] = [𝑤𝑤�̇�𝑝]
[𝑤𝑤𝑝𝑝

𝑝𝑝]
.    

   The �̇�𝑤𝑒𝑒is the time derivative of the plastic shear relative displacement and 𝑤𝑤𝑒𝑒
𝑒𝑒 is the shear 

relative displacement corresponding to the maximum value of the stress ratio. The plastic 
yield function is given by the expression below: 

                                𝑓𝑓 = 𝜏𝜏 − 𝛼𝛼𝑀𝑀𝜎𝜎𝑛𝑛
𝛽𝛽𝑀𝑀 = 0                                                                  (13) 

Where 𝛼𝛼𝑀𝑀 is the current value of the hardening rule. More details of the model can be found 
in [18] and [19].The plastic potential is given as 𝑔𝑔 is given as: 

                              𝑔𝑔 = 𝜏𝜏 − 𝑏𝑏
1+𝑎𝑎 𝜎𝜎𝑛𝑛 [1 + 𝑎𝑎 (𝜎𝜎𝑛𝑛

𝜎𝜎𝑐𝑐
) − 1+𝑎𝑎

𝑎𝑎 ] = 0                                     (14) 

    Where 𝜎𝜎𝑐𝑐 is the critical stress. The parameters 𝑎𝑎 and 𝑏𝑏 are the slope and the intercept of the 
flow rule to the stress ratio 𝜂𝜂. 
 

3 CONTACT ELEMENT DESCRIPTION 
    Beside the constitutive models that are necessary, the numerical simulation technique for 
the discontinuity at the contact is also important. Here, we use the zero-thickness interface , 
beside this the thin-layer element formulation from Desai [20] and the Mortara [7] method 
can be used. For the shear test modeled numerically in this paper, the zero thickness element 
of [9] , was  used. It has 4 nodes and 8 displacement degrees of freedoms in total. The 
formulation is derived based on two relative displacements of the continuum element on both 
sides of the interface. One displacement component is the normal, and the other one is the 
tangential component to the interface. 
    Starting from the energy equation and minimizing with respect to nodal point 
displacements, the element stiffness for the four-nodal point element is indicated in Figure 2. 

 [�̇�𝜎] = [𝐷𝐷]𝑒𝑒𝑒𝑒[𝜀𝜀̇]            (10) 
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As the element has zero thickness, the nodes 1,4 and 2,3 have identical coordinates at the 
beginning of the simulation. 
 

 

Figure 2: Zero thickness contact element geometry [9] 

    The vector [𝒖𝒖] contains all nodal displacements in the local coordinate system, where 𝑢𝑢 
refers to horizontal displacement and 𝑣𝑣 to vertical displacement. Indexes 1,2,3,4 refer to the 
node number. 

 [𝒖𝒖] = [𝑢𝑢1 𝑣𝑣1 𝑢𝑢2 𝑣𝑣2 𝑢𝑢3 𝑣𝑣3 𝑢𝑢4 𝑣𝑣4] (15) 

The vector of relative displacements {𝑤𝑤} is defined as: 
 {𝑤𝑤} = {𝑤𝑤𝑠𝑠

𝑤𝑤𝑛𝑛
} = {𝑢𝑢𝑡𝑡−𝑢𝑢𝑏𝑏

𝑣𝑣𝑡𝑡−𝑣𝑣𝑏𝑏
} (16) 

 
     Where 𝑤𝑤𝑠𝑠, 𝑤𝑤𝑛𝑛 are tangential and normal relative displacements. 𝑢𝑢, 𝑣𝑣 are the displacements 
along x and y axis and 𝑡𝑡, 𝑏𝑏= top/bottom segment of the interface. Displacements 𝑢𝑢, 𝑣𝑣 can be 
approximated by using standard linear Gaussian interpolation functions 𝑁𝑁1, 𝑁𝑁2: 
 𝑁𝑁1 =  1

2 − 𝑥𝑥
𝑙𝑙                      𝑁𝑁2 =  1

2 + 𝑥𝑥
𝑙𝑙                         (17) 

 
 𝑢𝑢𝑡𝑡

𝑣𝑣𝑡𝑡
= [ −𝑁𝑁1         0     −  𝑁𝑁2        0      0         0         0      0

0         − 𝑁𝑁1       0      − 𝑁𝑁2      0        0            0        0 ][𝒖𝒖]   (18) 

 

 
 𝑢𝑢𝑏𝑏

𝑣𝑣𝑏𝑏
= [ 0          0          0        0      𝑁𝑁1         0           𝑁𝑁2          0              0      

0          0           0           0        0              𝑁𝑁1              0           𝑁𝑁2  ][𝒖𝒖]      (19) 

 
The strain displacement matrix [𝐵𝐵] is given as: 

 [𝐵𝐵] = [ −𝑁𝑁1    0   − 𝑁𝑁2        0          𝑁𝑁1     0         𝑁𝑁2      0
       0   − 𝑁𝑁1      0  − 𝑁𝑁2       0        𝑁𝑁1       0     𝑁𝑁2 ]   (20) 

 
The strain energy 𝑈𝑈 can be calculated as:  
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𝑈𝑈 = 1

2 [𝑢𝑢]𝑇𝑇 ∫ [𝐵𝐵]𝑇𝑇
𝑙𝑙/2

−𝑙𝑙/2
[𝐷𝐷 𝑒𝑒][𝐼𝐼][𝐵𝐵] 𝑑𝑑𝑑𝑑 

   (21) 

 

From the Eq. (21)  the stiffness matrix 𝐾𝐾 can be calculated: 

 
𝐾𝐾 = ∫ [𝐵𝐵]𝑇𝑇

𝑙𝑙

0
[𝐷𝐷 𝑒𝑒][𝐼𝐼][𝐵𝐵] 𝑑𝑑𝑑𝑑 

  (22) 

 

The strain matrix: 

 𝜀𝜀 = [𝐵𝐵] [𝑢𝑢] (23) 

   The assumption of Goodman et al. [9] is to have a continuous displacement field that leads 
to a continuous stress field through the length l. For an elastic behavior, the stress as obtained: 

   In the group of zero thickness family can be found more advanced contact elements which 
take in consideration more complicated phenomena. Cerfontaine et al [21] proposed a 3D 
hydro-mechanical coupled element. The element belongs to the zero-thickness formulation 
and the contact constraint is ensured by the penalty method. Fluid flow is discredited through 
a three-node scheme, discrediting the inner flow by additional nodes. The element can 
reproduce stick, slip, bonding, de-bonding degrees of freedom. Stutz et al [22] proposed an 
extended zero thickness element which reproduces the gap opening for cohesive soils. The 
interface element consists in a 16-node element with an isoparametric formulation. 
 

4 NUMERICAL MODEL 

4.1 Direct shear test model description 
 
    In order to study the local soil-pile interface behavior, a direct shear test was modeled 
numerically. The problem was treated with a 2D plane strain model. The model consists of 
two different domains: soil (upper part) and solid (lower part) as shown in Figure 3.  
 

 
Figure 3: Shear test geometry 

 𝜎𝜎 = [ 𝐷𝐷𝑒𝑒] [𝜀𝜀] (24) 
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    On the structure/solid block, zero displacement both in vertical and horizontal direction 
were imposed (Figure 4). The normal pressure 𝑝𝑝𝑛𝑛 =100kPa was imposed on top of the soil 
part and a shear displacement  𝑢𝑢𝑠𝑠 =1 cm was imposed on the left side. The continuum 
behavior of the solid and the soil domain are considered purely elastic. In this study only the 
non-linear behavior of the contact zone is studied. The dimensions of each block are 25cm x 5 
cm. The model has in total 20 elements. Each block is divided in 8 quadrilateral elements with 
4 nodes and the contact area has 4 zero thickness elements as in [3] also with 4 nodes. 
 

 
 

Figure 4: Shear test dimensions and boundary conditions  
 

4.2 Results and discussion 
    For each constitutive model the relation between shear stress and shear strain is plotted in 
Figure 5. Even though the continuum material properties and boundary conditions remained 
the same, different interface models lead to different stress-displacement results. The 
parameters for each model can be found in the Apendix A. 
    The Mohr-Coulomb contact model is advantageous in terms of computational effort, and it 
has only four parameters to consider. Being a bilinear model, has the disadvantage that once it 
reaches the maximal stress limit, no other additional stress is captured. The general behavior 
of this model does not include advances for softening and hardening behavior.  
    The hyperbolic model is very sensitive to any change of parameters. The displacement 
increment needs to be very small and having consequently many time steps.  
   The model from Lashkari [6] model involves 11 parameters . It does not converge until the 
end, but it is possible reach the peak value. The problem starts to appear when the softening 
behaviour should appear. 
    Mortara’s model [7] converges until the last step and it reproduces well hardening and 
softening behavior. The only drawback is the high number of parameters (15). 
    The comparison of all different implementation is not the aim of the paper, however it is 
shown that the implementation of advanced interface models is possible and successful. 
However differences in the achieved accuracy and computional robustness are obvious. A 
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comparison of values can not be done due to the differences parameter sets which was used in 
the simulations. The global behaviour of shear test under normal pressure loading and shear 
displacements is given in  Figure 6 using Mortara model. The global behaviour of the direct 
interface test simulation in terms of shear stress deformed shape is presented in Figure 6 and 
shows the expected results.  

 

[21] 

Figure 5: Results from the numerical model for each constitutive model 

             
Figure 6: Gid post-process results 

 

 

τ 
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5 CONCLUSIONS 
- Contact elements are an important tool to study the behavior of shaft friction. Along 

with an adequate constitutive model, they are able model numerically the phenomena 
that are important in the contact area between soil and pile. 

- Preliminary results on monotonic loading showed that Mortara’s model produces 
reasonable results compared to the other model. Nevertheless, the high number of 
parameters makes it challenging to use the model for different soils.  

- The study of the different models helps to identify issues and challenges for future 
work about the implementation and usage of the different models. In addition, this 
helps for model improvement and development of the models.  
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APENDIX A 

Mohr-Coulomb 
Parameter Definition        Unit Value 

𝐸𝐸 Young Modulus 𝑀𝑀𝑀𝑀𝑀𝑀 60 
𝜐𝜐 Poisson ratio - 0.35 
𝜑𝜑 Interface friction angle - 35 
𝑐𝑐 Cohesion KPa 1 

 

Hyperbolic 
Parameter Definition       Unit Value 

𝛾𝛾𝑤𝑤 Unit weight of water 𝑁𝑁/𝑚𝑚3 10000 
𝐾𝐾𝐼𝐼 Dimensionless stiffness number - 70000 
𝑛𝑛𝐻𝐻𝐻𝐻 Stiffness exponent - 0.75 
𝑅𝑅𝑓𝑓 Failure ratio - 0.92 
𝜑𝜑 Interface friction angle o 35 
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Mortara 
Parameter Definition        Unit Value 

𝐾𝐾𝑠𝑠0
𝑒𝑒  Elastic tangential stiffness 𝑀𝑀𝑀𝑀𝑀𝑀  500e6 

𝐾𝐾𝑛𝑛0
𝑒𝑒  Elastic Normal stiffness 𝑀𝑀𝑀𝑀𝑀𝑀 585e6 

𝐴𝐴0 Initial dilatancy constant - 11 
𝐴𝐴1𝐿𝐿 Intermediate dilatancy constant - 0.85 
ℎ0 Plastic hardening modulus constant - 0.35 
𝑀𝑀𝐿𝐿 Critical stress ratio - 0.638 
𝑒𝑒0 Initial void ratio - 1.01 
𝜆𝜆𝐿𝐿 Critical state line location in e-ln𝜎𝜎𝑛𝑛 - 0.09 
𝑛𝑛𝑏𝑏 Influence of interface state on peak stress ratio - 1.15 
𝑛𝑛𝑑𝑑 Influence of state on phase transformation - 0.73 
t thickness m 0.003 

 
 
 
Lashkari 
Parameter Definition       Unit Value 

𝐾𝐾𝑛𝑛
𝑒𝑒 Elastic normal stiffness 𝑀𝑀𝑀𝑀/𝑚𝑚  1.0e10 

𝐶𝐶𝑘𝑘 Ratio between normal and shear stiffness - 1 
𝛼𝛼𝑝𝑝 Maximum value of hardening value 𝑀𝑀𝐴𝐴1−𝛽𝛽𝛽𝛽 2.68 
𝛼𝛼𝑐𝑐 Asymptotic value of the hardening function 𝑀𝑀𝐴𝐴1−𝛽𝛽𝛽𝛽  2.15 
𝜉𝜉𝛽𝛽 𝜔𝜔𝑝𝑝 paramater 𝑀𝑀𝐴𝐴−1 3.68e-9 
𝜁𝜁 𝜔𝜔𝑝𝑝 paramater 𝑚𝑚 7.26e-5 

𝜇𝜇𝛽𝛽 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 paramater 𝑀𝑀𝐴𝐴−1 2.171e-7 
𝜐𝜐𝑑𝑑 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 paramater - 0.24 
𝜌𝜌𝛽𝛽 Ratio between stress ratios for d=0 for hardening 

or softening condition 
- 0.550 

𝛽𝛽𝛽𝛽 Exponent of plastic functions - 0.9 
𝜔𝜔 Hardening model parameter - 235.6 
𝜓𝜓 Hardening model parameter - 0.16 
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