373 research outputs found

    Pneumatic Haptic Interfaces

    Get PDF
    An instrumentation system for direct measurement of the thermal conductivity of a small sample of a highly insulating material has been devised. As used here, (1) "small" signifies having dimensions of the order of two centimeters - significantly less than the sizes of specimens for which prior devices for direct measurement of thermal conductivity have been designed; and (2) "highly insulating" signifies having thermal conductivity of the order of that of air. The heart of the system is an assembly that includes two copper disks - one electrically heated, the other cooled with chilled water. The disks are separated by a guard ring made of strong, thermally insulating polymethacrylamide foam. The sample fits between the copper disks and within the ring (see figure). Matched thermocouples are used to measure the temperatures of the heated and cooled disks. The heated and cooled disks are affixed to larger foam disks, and the essentially still air in the gap between the larger disks insulates the sides of the specimen. This air gap region can be further divided by extending the foam ring into the gap region. The entire assembly as described thus far is lightly clamped together by means of nylon threaded rods and is placed inside a cylindrical chamber wherein the temperature is maintained at a set value (typically, 25 C)

    Modifications of Fabrication of Vibratory Microgyroscopes

    Get PDF
    A micromachining process for the fabrication of vibratory microgyroscopes from silicon wafers, and aspects of the microgyroscope design that are inextricably linked with the fabrication process, have been modified in an effort to increase production yields from perspectives of both quantity and quality. Prior to the modifications, the effective production yield of working microgyroscopes was limited to one or less per wafer. The modifications are part of a continuing effort to improve the design and increase production yields to more than 30 working microgyroscopes per wafer. A discussion of pertinent aspects of the unmodified design and the unmodified fabrication process is prerequisite to a meaningful description of the modifications. The design of the microgyroscope package was not conducive to high yield and rapid testing of many microgyroscopes. One of the major impediments to high yield and testing was found to lie in vibration- isolation beams around the four edges of each microgyroscope, which beams were found to be unnecessary for achieving high resonance quality factors (Q values) characterizing the vibrations of petallike cantilevers. The fabrication process included an 8- m-deep plasma etch. The purpose of the etch was to create 8- m vertical gaps, below which were to be placed large gold evaporated electrodes and sensing pads to drive and sense resonant vibrations of the "petals." The process also included a step in which bridges between dies were cut to separate the dies. The etched areas must be kept clean and smooth (free of debris and spikes), because any object close to 8 m high in those areas would stop the vibrations. However, it was found that after the etch, there remained some spikes with heights that were, variously, almost as high or as high as the etch depth. It also was found that the cutting of bridges created silicon debris, some of which lodged in the 8- m gaps and some of which landed on top of the petals. The masses added to the petals by the debris altered resonance frequencies and/or Q values to unacceptable degrees. Hence, the spikes and the debris have been conjectured to cause most of the observed malfunctions of newly fabricated microgyroscopes. Another pertinent aspect of the unmodified design and process was the fabrication of electrodes and the 8- m capacitance gap on a 500- m-thick wafer, and the fabrication of a 3-mm-thick baseplate from another wafer. It was necessary to bond these wafers to each other in an assembly step that was later found to be superfluous in that it could be eliminated by a suitable modification of the design

    Miniature Scroll Pumps Fabricated by LIGA

    Get PDF
    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios

    Thermal Transport Across Graphene Step Junctions

    Get PDF
    Step junctions are often present in layered materials, i.e. where single-layer regions meet multi-layer regions, yet their effect on thermal transport is not understood to date. Here, we measure heat flow across graphene junctions (GJs) from monolayer to bilayer graphene, as well as bilayer to four-layer graphene for the first time, in both heat flow directions. The thermal conductance of the monolayer-bilayer GJ device ranges from ~0.5 to 9.1x10^8 Wm-2K-1 between 50 K to 300 K. Atomistic simulations of such GJ device reveal that graphene layers are relatively decoupled, and the low thermal conductance of the device is determined by the resistance between the two dis-tinct graphene layers. In these conditions the junction plays a negligible effect. To prove that the decoupling between layers controls thermal transport in the junction, the heat flow in both directions was measured, showing no evidence of thermal asymmetry or rectification (within experimental error bars). For large-area graphene applications, this signifies that small bilayer (or multilayer) islands have little or no contribution to overall thermal transport

    Subsequent Subarachnoid Hemorrhage from Clinically Unrelated Vertebral Artery Dissection after Thrombolytic Therapy

    Get PDF
    Thrombolysis administration poses certain safety issues in ischemic stroke patients with cerebrovascular changes that are vulnerable to hemorrhage. Furthermore, the lack of related studies has resulted in an unclear understanding of thrombolysis safety in ischemic stroke patients with intracranial dissection, including those involving the vertebral artery. This study describes a case of a 59-year-old female who developed subarachnoid hemorrhage from clinically unrelated vertebral artery dissection after thrombolysis. Histories of severe headache with posterior fossa involvement in patients receiving thrombolytic therapy may indicate careful assessment for intracranial vertebral artery dissection, even if the clinical picture of the patient suggests another arterial syndrome

    Millimeter-wave wireless power transfer technology for space applications

    Get PDF
    Technologies enabling the development of compact systems for wireless transfer of power through radio frequency waves (RF) continue to be important for future space based systems. For example, for lunar surface operation, wireless power transfer technology enables rapid on-demand transmission of power to loads (robotic systems, habitats, and others) and eliminates the need for establishing a traditional power grid. A typical wireless power receiver consists of an array of rectenna elements. Each rectenna element consists of an antenna together with a high speed diode and a storage capacitor configured in a highly tuned narrowband circuit for this purpose. The conversion of the microwave energy into DC in this fashion is almost instantaneous. Using a high power rectenna array in concert with a fast charging high performance battery can enable charging of the battery at very short time with a large power burst and discharge of it at a lower rate for an extended operation time for remote electronic assets

    Tribological characteristics of high strength low alloy steel under various environmental conditions

    Get PDF
    High strength low alloy steel has excellent heat resistance and high strength. As it is commonly used as gun barrel material, a long service life and superior wear resistance are necessary for steel components. Here we investigated the wear characteristics of high strength low alloy steel surfaces under various environmental conditions, using a pin-on-disk wear test. Oxidation and wear debris effects on the coefficient of friction (COF) of the alloy steel were examined under air and argon (Ar) gas flow at atmospheric conditions

    Explaining Convolutional Neural Networks through Attribution-Based Input Sampling and Block-Wise Feature Aggregation

    Full text link
    As an emerging field in Machine Learning, Explainable AI (XAI) has been offering remarkable performance in interpreting the decisions made by Convolutional Neural Networks (CNNs). To achieve visual explanations for CNNs, methods based on class activation mapping and randomized input sampling have gained great popularity. However, the attribution methods based on these techniques provide lower resolution and blurry explanation maps that limit their explanation power. To circumvent this issue, visualization based on various layers is sought. In this work, we collect visualization maps from multiple layers of the model based on an attribution-based input sampling technique and aggregate them to reach a fine-grained and complete explanation. We also propose a layer selection strategy that applies to the whole family of CNN-based models, based on which our extraction framework is applied to visualize the last layers of each convolutional block of the model. Moreover, we perform an empirical analysis of the efficacy of derived lower-level information to enhance the represented attributions. Comprehensive experiments conducted on shallow and deep models trained on natural and industrial datasets, using both ground-truth and model-truth based evaluation metrics validate our proposed algorithm by meeting or outperforming the state-of-the-art methods in terms of explanation ability and visual quality, demonstrating that our method shows stability regardless of the size of objects or instances to be explained.Comment: 9 pages, 9 figures, Accepted at the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21

    The Mechanisms of Nuclear Proteotoxicity in Polyglutamine Spinocerebellar Ataxias

    Get PDF
    Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) are the most prevalent subset of SCAs and share the aberrant expansion of Q-encoding CAG repeats within the coding sequences of disease-responsible genes as their common genetic cause. These polyQ SCAs (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17) are inherited neurodegenerative diseases characterized by the progressive atrophy of the cerebellum and connected regions of the nervous system, which leads to loss of fine muscle movement coordination. Upon the expansion of polyQ repeats, the mutated proteins typically accumulate disproportionately in the neuronal nucleus, where they sequester various target molecules, including transcription factors and other nuclear proteins. However, it is not yet clearly understood how CAG repeat expansion takes place or how expanded polyQ proteins accumulate in the nucleus. In this article, we review the current knowledge on the molecular and cellular bases of nuclear proteotoxicity of polyQ proteins in SCAs and present our perspectives on the remaining issues surrounding these diseases. © Copyright © 2020 Lee, Lee, Lee and Lee.1

    Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array

    Get PDF
    Embryoid bodies have a number of similarities with cells in gastrulation, which provides useful biological information about embryonic stem cell differentiation. Extensive research has been done to study the control of embryoid body-mediated embryonic stem cell differentiation in various research fields. Recently, microengineering technology has been used to control the size of embryoid bodies and to direct lineage specific differentiation of embryonic stem cells. However, the underlying biology of developmental events in the embryoid bodies of different sizes has not been well elucidated. In this study, embryoid bodies with different sizes were generated within microfabricated PEG microwell arrays, and a series of gene and molecular expressions related to early developmental events was investigated to further elucidate the size-mediated differentiation. The gene and molecular expression profile suggested preferential visceral endoderm formation in 450 μm embryoid bodies and preferential lateral plate mesoderm formation in 150 μm embryoid bodies. These aggregates resulted in higher cardiac differentiation in 450 μm embryoid bodies and higher endothelial differentiation in 150 μm embryoid bodies, respectively. Our findings may provide further insight for understanding embryoid body size-mediated developmental progress.National Science Foundation (U.S.) (CAREER Award DMR0847287)United States. Office of Naval Research (Naval Research Young National Investigator Award)National Institutes of Health (U.S.) (HL092836, EB02597, AR057837
    corecore