140 research outputs found

    Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    Full text link
    The Fermi surface of a metal is the fundamental basis from which its properties can be understood. In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency demonstrates that it is a distinct Fermi surface and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction caused by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.Comment: 23 pages, 5 figure

    Pseudogap phase of cuprate superconductors confined by Fermi surface topology

    Full text link
    The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping pp^* that is material-dependent. What determines pp^* is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping pFSp_{FS} at which the large Fermi surface goes from hole-like to electron-like, so that pp^* \leq pFSp_{FS}. We derive this result from high-magnetic-field transport measurements in La1.6x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 under pressure, which reveal a large and unexpected shift of pp^* with pressure, driven by a corresponding shift in pFSp_{FS}. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that pp^* can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap.Comment: 15 pages, 5 figures, 7 supplemental figure

    Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor

    Get PDF
    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc

    Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}

    Full text link
    Experimental evidence on high-Tc cuprates reveals ubiquitous charge density wave (CDW) modulations, which coexist with superconductivity. Although the CDW had been predicted by theory, important questions remain about the extent to which the CDW influences lattice and charge degrees of freedom and its characteristics as functions of doping and temperature. These questions are intimately connected to the origin of the CDW and its relation to the mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive excitations from an incommensurate CDW that induces anomalously enhanced phonon intensity, unseen using other techniques. Near the pseudogap temperature T*, the CDW persists, but the associated excitations significantly weaken and the CDW wavevector shifts, becoming nearly commensurate with a periodicity of four lattice constants. The dispersive CDW excitations, phonon anomaly, and temperature dependent commensuration provide a comprehensive momentum space picture of complex CDW behavior and point to a closer relationship with the pseudogap state

    Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience

    Get PDF
    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue
    corecore