24 research outputs found

    Interaction of Aqueous Extract of Pleurotus pulmonarius (Fr.) Quel-Champ. with Glyburide in Alloxan Induced Diabetic Mice

    Get PDF
    Mushrooms are low calorie food with very little fat and are highly suitable for obese persons. With no starch and very low sugars, they are the ‘delight of the diabetics’. Combination of herbal drugs (or isolated phytochemicals) is found to be beneficial in certain diseases when given along with conventional drugs. The aim of the present study was to evaluate the effects of aqueous extract of Pleurotus pulmonarius (Lentinaceae) (called as PP-aqu) and its interaction with glyburide in alloxan induced diabetic mice. The diabetic mice treated were with PP-aqu (500 mg/kg, p.o.) alone or combination with glyburide (10 mg/kg, p.o.) for 28 days. Blood samples were collected by orbital sinus puncture using heparinized capillary glass tubes and were analyzed for serum glucose on 0, 7th, 14th, 21st and 28th days. Body weights and mortality were noted during the study period. In oral glucose tolerance test (OGTT), glucose (2.5 g/kg, p.o.) was administered with either vehicle, PP-aqu alone or in combination with glyburide and serum glucose level analyzed at 0, 30, 60 and 120 min after drug administration. Administration of PP-aqu (500 mg/kg) and its combination with glyburide (10 mg/kg) significantly (P < 0.001) decreased serum glucose level in diabetic mice. In OGTT, glyburide or PP-aqu treatment alone or their combination produced significant (P < 0.001) increase in glucose threshold. Thus we suggest that P. pulmonarius showed potent and synergistic antihyperglycemic effect in combination with glyburide

    Cardioprotective Activity of Pongamia pinnata in Streptozotocin-Nicotinamide Induced Diabetic Rats

    Get PDF
    Pongamia pinnata (L.) Pierre has been used in traditional medicine for the treatment for diabetes and metabolic disorder. The aim of this study was to investigate the effect of petroleum ether extract of the stem bark of P. pinnata (known as PPSB-PEE) on cardiomyopathy in diabetic rats. Diabetes was induced in overnight fasted Sprague-Dawley rats by using injection of streptozotocin (55 mg/kg, i.p.). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Rats were divided into group I: nondiabetic, group II: diabetic control (tween 80, 2%; 10 mL/kg, p.o.) as vehicle, and group III: PPSB-PEE (100 mg/kg, p.o.). The blood glucose level, ECG, hemodynamic parameters, cardiotoxic and antioxidant biomarkers, and histology of heart were carried out after 4 months after STZ with nicotinamide injection. PPSB-PEE treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters; and histological changes in STZ induced diabetic rats. PPSB-PEE (100 mg/kg, p.o.) decreased blood glucose level, improved electrocardiographic parameters (QRS, QT, and QTc intervals) and hemodynamic parameters (SBP, DBP, EDP, max dP/dt, contractility index, and heart rate), controlled levels of cardiac biomarkers (CK-MB, LDH, and AST), and improved oxidative stress (SOD, MDA, and GSH) in diabetic rats. PPSB-PEE is a promising remedy against cardiomyopathy in diabetic rats

    L-glutamine supplementation prevents the development of experimental diabetic cardiomyopathy in streptozotocin-nicotinamide induced diabetic rats.

    No full text
    The objective of the present investigation was to evaluate the effect of L-glutamine on cardiac myopathy in streptozotocin-nicotinamide induced diabetic rats. Diabetes was induced in overnight fasted Sprague Dawely rats by using intraperitonial injection of streptozotocin (55 mg/kg). Nicotinamide (100 mg/kg, i.p.) was administered 20 min before administration of streptozotocin. Experimental rats were divided into Group I: non-diabetic control (distilled water; 10 ml/kg, p.o.), II: diabetic control (distilled water, 10 ml/kg, p.o.), III: L-glutamine (500 mg/kg, p.o.) and IV: L-glutamine (1000 mg/kg, p.o.). All groups were diabetic except group I. The plasma glucose level, body weight, electrocardiographic abnormalities, hemodynamic changes and left ventricular contractile function, biological markers of cardiotoxicity, antioxidant markers were determined after 4 months after STZ with nicotinamide injection. Histopathological changes of heart tissue were carried out by using H and E stain. L-glutamine treatment improved the electrocardiographic, hemodynamic changes; LV contractile function; biological markers; oxidative stress parameters and histological changes in STZ induced diabetic rats. Results from the present investigation demonstrated that L-glutamine has seemed a cardioprotective activity

    Histopathology of rat heart by hematoxyline and Eosin staining.

    No full text
    <p>NM =  normal myocardium, CE =  cytoplasmic eosinophilia, IN  =  mycardial inflammation, CV =  cytoplasmic vacuolization. (A) Non-diabetic control, (B) Diabetic control group, (C) L-glutamine (500 mg/kg) and (D) L-glutamine (1000 mg/kg).</p

    Effect of L-glutamine on electrocardiographic, hemodynamic, Left ventricular function parameters and heart antioxidant enzymes in STZ-nicotinamide induced cardiomyopathy in rat.

    No full text
    <p><b>Foot note:</b> Results are represented as mean ± SEM, (n = 6). Data was analyzed by one way ANOVA followed by <i>post hoc</i> Tukey's test, <sup>*</sup><i>p</i><0.05, <sup>**</sup><i>p</i><0.01, <sup>***</sup><i>p</i><0.001 and ns –non-significant compared with diabetic control group, <sup>#</sup><i>p</i><0.05, <sup>##</sup><i>p</i><0.01, 442 <sup>###</sup><i>p</i><0.001 and ns – non-significant when compared with control non-diabetic group. <sup></sup><i>p</i><0.05,<sup></sup><i>p</i><0.05, <sup>$</sup><i>p</i><0.001 compared with L-glutamine (500 mg/kg).</p

    Effect on electrocardiographic parameters.

    No full text
    <p>(A) Non-diabetic control, (B) Diabetic control group, (C) L-glutamine (500 mg/kg) and (D) L-glutamine (1000 mg/kg).</p
    corecore