25 research outputs found

    Formal Controller Synthesis for Markov Jump Linear Systems with Uncertain Dynamics

    Full text link
    Automated synthesis of provably correct controllers for cyber-physical systems is crucial for deployment in safety-critical scenarios. However, hybrid features and stochastic or unknown behaviours make this problem challenging. We propose a method for synthesising controllers for Markov jump linear systems (MJLSs), a class of discrete-time models for cyber-physical systems, so that they certifiably satisfy probabilistic computation tree logic (PCTL) formulae. An MJLS consists of a finite set of stochastic linear dynamics and discrete jumps between these dynamics that are governed by a Markov decision process (MDP). We consider the cases where the transition probabilities of this MDP are either known up to an interval or completely unknown. Our approach is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS. We formalise this abstraction as an interval MDP (iMDP) for which we compute intervals of transition probabilities using sampling techniques from the so-called 'scenario approach', resulting in a probabilistically sound approximation. We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.Comment: 14 pages, 6 figures, under review at QES

    Correct-by-construction reach-avoid control of partially observable linear stochastic systems

    Get PDF
    We study feedback controller synthesis for reach-avoid control of discrete-time, linear time-invariant (LTI) systems with Gaussian process and measurement noise. The problem is to compute a controller such that, with at least some required probability, the system reaches a desired goal state in finite time while avoiding unsafe states. Due to stochasticity and nonconvexity, this problem does not admit exact algorithmic or closed-form solutions in general. Our key contribution is a correct-by-construction controller synthesis scheme based on a finite-state abstraction of a Gaussian belief over the unmeasured state, obtained using a Kalman filter. We formalize this abstraction as a Markov decision process (MDP). To be robust against numerical imprecision in approximating transition probabilities, we use MDPs with intervals of transition probabilities. By construction, any policy on the abstraction can be refined into a piecewise linear feedback controller for the LTI system. We prove that the closed-loop LTI system under this controller satisfies the reach-avoid problem with at least the required probability. The numerical experiments show that our method is able to solve reach-avoid problems for systems with up to 6D state spaces, and with control input constraints that cannot be handled by methods such as the rapidly-exploring random belief trees (RRBT)

    Decision-Making Under Uncertainty: Beyond Probabilities

    Full text link
    This position paper reflects on the state-of-the-art in decision-making under uncertainty. A classical assumption is that probabilities can sufficiently capture all uncertainty in a system. In this paper, the focus is on the uncertainty that goes beyond this classical interpretation, particularly by employing a clear distinction between aleatoric and epistemic uncertainty. The paper features an overview of Markov decision processes (MDPs) and extensions to account for partial observability and adversarial behavior. These models sufficiently capture aleatoric uncertainty but fail to account for epistemic uncertainty robustly. Consequently, we present a thorough overview of so-called uncertainty models that exhibit uncertainty in a more robust interpretation. We show several solution techniques for both discrete and continuous models, ranging from formal verification, over control-based abstractions, to reinforcement learning. As an integral part of this paper, we list and discuss several key challenges that arise when dealing with rich types of uncertainty in a model-based fashion

    Efficient Sensitivity Analysis for Parametric Robust Markov Chains

    Full text link
    We provide a novel method for sensitivity analysis of parametric robust Markov chains. These models incorporate parameters and sets of probability distributions to alleviate the often unrealistic assumption that precise probabilities are available. We measure sensitivity in terms of partial derivatives with respect to the uncertain transition probabilities regarding measures such as the expected reward. As our main contribution, we present an efficient method to compute these partial derivatives. To scale our approach to models with thousands of parameters, we present an extension of this method that selects the subset of kk parameters with the highest partial derivative. Our methods are based on linear programming and differentiating these programs around a given value for the parameters. The experiments show the applicability of our approach on models with over a million states and thousands of parameters. Moreover, we embed the results within an iterative learning scheme that profits from having access to a dedicated sensitivity analysis.Comment: To be presented at CAV 202

    CTMCs with Imprecisely Timed Observations

    Get PDF
    Labeled continuous-time Markov chains (CTMCs) describe processes subject to random timing and partial observability. In applications such as runtime monitoring, we must incorporate past observations. The timing of these observations matters but may be uncertain. Thus, we consider a setting in which we are given a sequence of imprecisely timed labels called the evidence. The problem is to compute reachability probabilities, which we condition on this evidence. Our key contribution is a method that solves this problem by unfolding the CTMC states over all possible timings for the evidence. We formalize this unfolding as a Markov decision process (MDP) in which each timing for the evidence is reflected by a scheduler. This MDP has infinitely many states and actions in general, making a direct analysis infeasible. Thus, we abstract the continuous MDP into a finite interval MDP (iMDP) and develop an iterative refinement scheme to upper-bound conditional probabilities in the CTMC. We show the feasibility of our method on several numerical benchmarks and discuss key challenges to further enhance the performance

    Efficient Sensitivity Analysis for Parametric Robust Markov Chains

    Get PDF
    We provide a novel method for sensitivity analysis of parametric robust Markov chains. These models incorporate parameters and sets of probability distributions to alleviate the often unrealistic assumption that precise probabilities are available. We measure sensitivity in terms of partial derivatives with respect to the uncertain transition probabilities regarding measures such as the expected reward. As our main contribution, we present an efficient method to compute these partial derivatives. To scale our approach to models with thousands of parameters, we present an extension of this method that selects the subset of kk parameters with the highest partial derivative. Our methods are based on linear programming and differentiating these programs around a given value for the parameters. The experiments show the applicability of our approach on models with over a million states and thousands of parameters. Moreover, we embed the results within an iterative learning scheme that profits from having access to a dedicated sensitivity analysis

    CTMCs with Imprecisely Timed Observations

    Get PDF
    Labeled continuous-time Markov chains (CTMCs) describe processes subject to random timing and partial observability. In applications such as runtime monitoring, we must incorporate past observations. The timing of these observations matters but may be uncertain. Thus, we consider a setting in which we are given a sequence of imprecisely timed labels called the evidence. The problem is to compute reachability probabilities, which we condition on this evidence. Our key contribution is a method that solves this problem by unfolding the CTMC states over all possible timings for the evidence. We formalize this unfolding as a Markov decision process (MDP) in which each timing for the evidence is reflected by a scheduler. This MDP has infinitely many states and actions in general, making a direct analysis infeasible. Thus, we abstract the continuous MDP into a finite interval MDP (iMDP) and develop an iterative refinement scheme to upper-bound conditional probabilities in the CTMC. We show the feasibility of our method on several numerical benchmarks and discuss key challenges to further enhance the performance
    corecore