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Abstract. We employ uncertain parametric CTMCs with parametric
transition rates and a prior on the parameter values. The prior encodes
uncertainty about the actual transition rates, while the parameters allow
dependencies between transition rates. Sampling the parameter values
from the prior distribution then yields a standard CTMC, for which we
may compute relevant reachability probabilities. We provide a principled
solution, based on a technique called scenario-optimization, to the follow-
ing problem: From a finite set of parameter samples and a user-specified
confidence level, compute prediction regions on the reachability probabil-
ities. The prediction regions should (with high probability) contain the
reachability probabilities of a CTMC induced by any additional sample.
To boost the scalability of the approach, we employ standard abstraction
techniques and adapt our methodology to support approximate reach-
ability probabilities. Experiments with various well-known benchmarks
show the applicability of the approach.

1 Introduction

Continuous-time Markov chains (CTMCs) are widely used to model complex prob-
abilistic systems in reliability engineering [51], network processes [36,38], sys-
tems biology [11,23] and epidemic modeling [2]. A key verification task is to com-
pute aspects of system behavior from these models, expressed as, e.g., continuous
stochastic logic (CSL) formulae [4,7]. Typically, we compute reachability prob-
abilities for a set of horizons, such as: what is the probability that a target state
is reached before time t1, . . . , tn? Standard algorithms [7] implemented in mature
model checking tools such as Storm [37] or Prism [42] provide efficient means to
compute these reachability probabilities. However, these methods typically require
that transition rates and probabilities are precisely known. This assumption is
often unrealistic [34] and led to some related work, which we discuss in Sect. 7.

Illustrative Example. An epidemic can abstractly be modeled as a finite-state
CTMC, e.g., the SIR (susceptible-infected-recovered) model [3], which is shown
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(a) pCTMC M with parameters λi, λr.
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(b) Distribution P over values for (λi, λr).

Fig. 1. An upCTMC (M, P) for the SIR (pop=2) model.
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Fig. 2. The probability of extinction in the SIR (140) model for horizons [100, t]. (Color
figure online)

in Fig. 1a for a population of two. Such a CTMC assumes a fixed set of transition
rates, in this case an infection rate λi, and a recovery rate λr. The outcome of
analyzing this CTMC for fixed values of λi and λr may yield a probability curve
like in Fig. 2a1, where we plot the probability (y-axis) of reaching a target state
that corresponds to the epidemic becoming extinct against varying time horizons
(x-axis). In fact, the plot is obtained via a smooth interpolation of the results at
finitely many horizons, cf. Fig. 2b. To acknowledge that λi, λr are in fact unknown,
we may analyze the model for different values of λi, λr, resulting in a set of curves
as in Fig. 2c. These individual curves, however, provide no guarantees about the
shape of the curve obtained from another infection and recovery rate. Instead, we
assume a probability distribution over the transition rates and aim to compute pre-
diction regions as those in shown Fig. 2d, in such a way that with a certain (high)
probability, any rates λi and λr yield a curve within this region.

Overall Goal. From the illustrative example, we state the following goal. Each
fixed set of transition rates induces a probability curve, i.e., a mapping from
horizons to the corresponding reachability probabilities. We aim to construct
prediction regions around a set of probability curves, such that with high proba-
bility and high confidence, sampling a set of transition rates induces a probability
curve within this region. Our key contribution is an efficient probably approxi-
mately correct, or PAC-style method that computes these prediction regions.
The remainder of the introduction explores the technical steps toward this goal.
1 For visual clarity, we plot the reachability probability between time 100 and t1, . . . , tn.
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Uncertain CTMCs. The setting above is formally captured by parametric CTMCs
(pCTMCs). Transition rates of pCTMCs are not given precisely but as (polyno-
mials over) parameters [15,34], such as those shown in Fig. 1a. We assume a prior
on each parameter valuation, i.e., assignment of values to parameters, similar to
settings in [11,44] and in contrast to, e.g., [23,34]. These priors may result from
asking different experts which value they would assume for, e.g., the infection rate.
The prior may also be the result of Bayesian reasoning [56]. Formally, we capture
the uncertainty in the rates by an arbitrary and potentially unknown probability
distribution over the parameter space, see Fig. 1b. We call this model an uncertain
pCTMC (upCTMC). The distribution allows drawing independent and identically
distributed (i.i.d.) samples that yield (parameter-free) CTMCs.

Problem Statement. We consider prediction regions on probability curves in the
form of a pair of two curves that ‘sandwich’ the probability curves, as depicted
in Fig. 2d. Intuitively, we then aim to find a prediction region R that is sufficiently
large, such that sampling parameter valuations yields a probability curve in R
with high probability p. We aim to compute a lower bound on this containment
probability p. Naturally, we also aim to compute a meaningful, i.e. small (tight),
prediction region R. As such, we aim to solve the following problem:

Problem Statement. Given a upCTMC with a target state, compute
1. a (tight) prediction region R on the probability curves, and
2. a (tight) lower bound on the containment probability that a sampled

parameter valuation induces a probability curve that will lie in R.
We solve this problem with a user-specified confidence level β.

The Problem Solved. In this paper, we present a method that samples probability
curves as in Fig. 2c, but now for, say 100 curves. From these curves, we compute
prediction regions (e.g., both tubes in Fig. 2d) and compute a lower bound (one
for both tubes) on the containment probability that the curve associated with any
sampled parameter value will lie in the specific prediction region (tube). Specifi-
cally, for a confidence level of 99% and considering 100 curves, we conclude that
this lower bound is 79.4% for the red region and 7.5% for the blue region. For a
higher confidence level of 99.9%, the lower bounds are slightly more conservative.

A Change in Perspective. Toward the algorithm, we make a change in perspec-
tive. For two horizons t1 and t2, reachability probabilities for fixed CTMCs are
two-dimensional points in [0, 1]2 that we call solution vectors, as shown in Fig. 3a.
Here, these solution vectors represent pairs of the probabilities that the disease
becomes extinct before time t1 and before t2. The prediction regions as in Fig. 2d
are shown as the shaded boxes in Fig. 3a.

Solving the problem algorithmically. We solve the problem using a sampling-
based approach. Starting with a set of solution vectors, we use techniques from
scenario optimization, a data-driven methodology for solving stochastic opti-
mization problems [18,21]. As such, we construct the prediction region from the
solution to an optimization problem. Our method can balance the size of the
prediction region with the containment probability, as illustrated by the two
boxes in Fig. 3a.
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Fig. 3. Prediction regions on the solutions vectors for two different upCTMCs.

Extensions. Our approach offers more than prediction regions on probability
curves from precise samples. The change in perspective mentioned above allows
for solution vectors that represent multiple objectives, such as the reachability
with respect to different goal states, expected rewards or even the probability
mass of paths satisfying more complex temporal properties. In our experiments,
we show that this multi-objective approach —also on probability curves— yields
much tighter bounds on the containment probability than an approach that
analyzes each objective independently. We can also produce prediction regions
as other shapes than boxes, as, for example, shown in Fig. 3b. To accelerate our
approach, we significantly extend the methodology for dealing with imprecise
verification results, given as an interval on each entry of the solution vector.

Contributions. Our key contribution is the approach that provides prediction
regions and lower bounds on probability curves for upCTMCs. The approach
requires only about 100 samples and scales to upCTMCs with tens of parameters.
Furthermore: (1) We extend our approach such that we can also handle the case
where only imprecise intervals on the verification results are available. (2) We
develop a tailored batch verification method in the model checker Storm [37] to
accelerate the required batches of verification tasks. We accompany our contribu-
tions by a thorough empirical evaluation and remark that our batch verification
method can be used beyond scenario optimization. Our scenario optimization
results are independent of the model checking and are, thus, applicable to any
model where solution vectors are obtained in the same way as for upCTMCs.

Data Availability. All source code, benchmarks, and logfiles used to produce the
data are archived: https://doi.org/10.5281/zenodo.6523863.

2 Problem Statement

In this section, we introduce pCTMCs and upCTMCs, and we define the formal
problem statement. We use probability distributions over finite and infinite sets;
see [9] for details. The set of all distributions over a set X is denoted by Dist(X ).
The set of polynomials over parameters V , with rational coefficients, is denoted
by Q[V ]. An instantiation u : V → Q maps parameters to concrete values. We
often fix a parameter ordering and denote instantiations as vectors, u ∈ Q

|V |.

https://doi.org/10.5281/zenodo.6523863
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Definition 1 (pCTMC). A pCTMC is a tuple M = (S, sI , V,R), where S is
a finite set of states, sI ∈ Dist(S ) is the initial distribution, V are the (ordered)
parameters, and R : S × S → Q[V ] is a parametric transition rate function. If
R(s, s) ∈ Q≥0 for all s, s′ ∈ S, then M is a (parameter-free) CTMC.

For any pair of states s, s′ ∈ S with a non-zero rate R(s, s′) > 0, the probability
of triggering a transition from s to s′ within t time units is 1 − e−R(s,s′)·t [41].

Applying an instantiation u to a pCTMC M yields an instantiated CTMC
M[u] = (S, sI , V,R[u]) where R[u](s, s′) = R(s, s′)[u] for all s, s′ ∈ S. In the
remainder, we only consider instantiations u for a pCTMC M which are well-
defined. The set of such instantiations is the parameter space VM.

A central measure on CTMCs is the (time-bounded) reachability Pr(♦≤τE),
which describes the probability that one of the error states E2 is reached within
the horizon τ ∈ Q. Other measures include the expected time to reach a par-
ticular state, or the average time spent in particular states. We refer to [41] for
details.

Given a concrete (instantiated) CTMC M[u], the solution for measure ϕ
is denoted by solϕM[u] ∈ R; the solution vector solΦM[u] ∈ R

m generalizes this
concept to an (ordered) set of m measures Φ = ϕ1, . . . , ϕm. We abuse notation
and introduce the solution function to express solution vectors on a pCTMC:

Definition 2 (Solution function). A solution function solΦM : VM → R
|Φ| is

a mapping from a parameter instantiation u ∈ VM to the solution vector solΦM[u].

We often omit the scripts in solΦM(u) and write sol(u) instead. We also refer to
sol(u) as the solution vector of u. For n parameter samples Un = {u1, . . . , un}
with ui ∈ VM, we denote the solution vectors by sol(Un) ∈ R

m×n.
Using solution vectors, we can define the probability curves shown in Fig. 2c.

Definition 3 (Probability curve). The probability curve for reachability
probability φτ = Pr(♦≤τE) and CTMC M[u] is given by probC : τ �→ solϕτ

M[u].

We can approximate the function probC for a concrete CTMC by computing
probC(t1), . . . , probC(tm) for a finite set of time horizons. As such, we compute
the solution vector w.r.t. m different reachability measures Φ = {ϕt1 , . . . , ϕtm

}.
By exploiting the monotonicity3 of the reachability over time, we obtain an upper
and lower bound on probC(τ) as two step functions, see Fig. 2d. We can smoothen
the approximation, by taking an upper and lower bound on these step functions.

We study pCTMCs where the parameters follow a probability distribution.
This probability distribution can be highly complex or even unknown; we merely
assume that we can sample from this distribution.

Definition 4 (upCTMC). A upCTMC is a tuple (M, P) with M a pCTMC
and P a probability distribution over the parameter space VM of M.

2 Formally, states are labeled and E describes the label, see [8].
3 In Definition 3, only the upper limit on the timebound is varied, so measures are mono-

tonic.
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A upCTMC defines a probability space (VM, P) over the parameter values, whose
domain is defined by the parameter space VM. In the remainder, we denote a
sample from VM drawn according to P by u ∈ VM.

To quantify the performance of a upCTMC, we may construct a prediction
region on the solution vector space, such as those shown in Fig. 3a. In this paper,
we consider only prediction regions which are compact subsets R ⊆ R

|Φ|. We
define the so-called containment probability of a prediction region, which is the
probability that the solution vector sol(u) for a randomly sampled parameter
u ∈ VM is contained in R, as follows:

Definition 5 (Containment probability). For a prediction region R, the
containment probability containV(R) is the probability that the solution vector
sol(u) for any parameter sample u ∈ VM is contained in R:

containV(R) = Pr{u ∈ VM : sol(u) ∈ R}. (1)

Recall that we solve the problem in Sect. 1 with a user-specified confidence level,
denoted by β ∈ (0, 1). Formally, we solve the following problem:

Formal Problem. Given a upCTMC (M, P), a set Φ of measures, and
a confidence level β ∈ (0, 1), compute a (tight) prediction region R and a
(tight) lower bound μ ∈ (0, 1) on the containment probability, such that
contain(R) ≥ μ holds with a confidence level of at least β.

The problem in Sect. 1 is a special case of the formal problem, with Φ the reach-
ability probability over a set of horizons. In that case, we can overapproximate
a prediction region as a rectangle, yielding an interval [

¯
c, c̄] for every horizon t

that defines where the two step functions (see below Definition 3) change. We
smoothen these step functions (similar to probability curves) to obtain the fol-
lowing definition:

Definition 6 (Prediction region for a probability curve). A prediction
region R over a probability curve probC is given by two curves

¯
c, c̄ : Q≥0 → R as

the area in-between: R = {(t, y) ∈ Q × R |
¯
c(t) ≤ y ≤ c̄(t)}.

We solve the problem by sampling a finite set Un of parameter values of the
upCTMC and computing the corresponding solution vectors sol(Un). In Sect. 3,
we solve the problem assuming that we can compute solution vectors exactly. In
Sect. 4, we consider a less restricted setting in which every solution is imprecise,
i.e. only known to lie in a certain interval.

3 Precise Sampling-Based Prediction Regions

In this section, we use scenario optimization [16,18] to compute a high-confidence
lower bound on the containment probability. First, in Sect. 3.1, we describe how
to compute a prediction region using the solution vectors sol(Un) for the param-
eter samples Un. In Sect. 3.2, we clarify how to compute a lower bound on the
containment probability with respect to this prediction region. In Sect. 3.3, we
construct an algorithm based on those results that solves the formal problem.
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3.1 Constructing Prediction Regions

We assume that we are given a set of solution vectors sol(Un) obtained from n
parameter samples. We construct a prediction region R based on these vectors
such that we can annotate these regions with a lower bound on the containment
probability, as in the problem statement. For conciseness, we restrict ourselves
to the setting where R is a hyperrectangle in R

m, with m = |Φ| the number of
measures, cf. Remark 1 below. In the following, we represent R using two vectors
(points)

¯
x, x̄ ∈ R

m such that, using pointwise inequalities, R = {x |
¯
x ≤ x ≤ x̄}.

For an example of such a rectangular prediction region, see Fig. 3a.
As also shown in Fig. 3a, we do not require R to contain all solutions in

sol(Un). Instead, we have two orthogonal goals: we aim to minimize the size of
R, while also minimizing the (Manhattan) distance of samples to R, measured
in their 1-norm. Solutions contained in R are assumed to have a distance of zero,
while solutions not contained in R are called relaxed. These goals define a multi-
objective problem, which we solve by weighting the two objectives using a fixed
parameter ρ > 0, called the cost of relaxation, that is used to scale the distance
to R. Then, ρ → ∞ enforces sol(Un) ⊆ R, as in the outer box in Fig. 3a, while
for ρ → 0, R is reduced to a point. Thus, the cost of relaxation ρ is a tuning
parameter that determines the size of the prediction region R and hence the
fraction of the solution vectors that is contained in R (see [19,21] for details).

We capture the problem described above in the following convex optimiza-
tion problem Lρ

U . We define the decision variables
¯
x, x̄ ∈ R

m to represent the
prediction region. In addition, we define a decision variable ξi ∈ R

m
≥0 for every

sample i = 1, . . . , n that acts as a slack variable representing the distance to R.

Lρ
U : minimize ‖x̄ −

¯
x‖1 + ρ

n∑

i=1

‖ξi‖1 (2a)

subject to
¯
x − ξi ≤ sol(ui) ≤ x̄ + ξi ∀i = 1, . . . , n. (2b)

The objective function in Eq. (2a) minimizes the size of R —by minimizing the
sum of the width of the prediction region in all dimensions— plus ρ times the
distances of the samples to R. We denote the optimal solution to problem Lρ

U
for a given ρ by R∗

ρ, ξ
∗
ρ , where R∗

ρ = [
¯
x∗

ρ, x̄
∗
ρ] for the rectangular case.

Assumption 1. The optimal solution R∗
ρ, ξ

∗
ρ to Lρ

U exists and is unique.

Note that Definition 2 ensures finite-valued solution vectors, thus guaranteeing the
existence of a solution to Eq. (2). If the solution is not unique, we apply a suitable
tie-break rule that selects one solution of the optimal set (e.g., the solution with a
minimum Euclidean norm, see [16]). The following example shows that values of
ρ exist for which such a tie-break rule is necessary to obtain a unique solution.

Example 1. Figure 4 shows a set of solution vectors in one dimension, labeled A–
F . Consider prediction region R1 = [A,F ]. The corresponding objective value Eq.
(2a) is ‖x̄ −

¯
x‖ + ρ · ∑

ξi = ‖x̄ −
¯
x‖ = δ1 + · · · + δ5, as all ξi = 0. For prediction

region R2 = [B,E], the objective value is δ2+δ3+δ4+ρ·δ1+ρ·δ5. Thus, for ρ > 1,
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solving Lρ
U yields R1 whereas for ρ < 1, relaxing solutions A and F is cheaper than

not doing so, so R2 is optimal. When ρ = 1, however, relaxing solutions A and F
yields the same cost as not relaxing these samples, so a tie-break rule is needed (see
above). For ρ < 1

2 , relaxing samples A, B, E, and F is cost-optimal, resulting in
the prediction region containing exactly {C,D}. ��
Similarly, we can consider cases with more samples and multiple measures, as
shown in Fig. 5 (see [6, Appendix A] for more details). The three prediction
regions in Fig. 5 are obtained for different costs of relaxation ρ. For ρ = 2, the
region contains all vectors, while for a lower ρ, more vectors are left outside.

Remark 1. While problem Lρ
U in Eq. (2) yields a rectangular prediction region, we

can also produce other shapes. We may, e.g., construct a Pareto front as in Fig. 3b,
by adding additional affine constraints [12]. In fact, our only requirement is that
the objective function is convex, and the constraints are convex in the decision
variables (the dependence of the constraints on u may be arbitrary) [21]. ��

3.2 Bounding the Containment Probability

The previous section shows how we compute a prediction region based on convex
optimization. We now characterize a valid high-confidence lower bound on the
containment probability w.r.t. the prediction region given by the optimal solution
to this optimization problem. Toward that result, we introduce the so-called
complexity of a solution to problem Lρ

U in Eq. (2), a concept used in [21] that is
related to the compressibility of the solution vectors sol(Un):

Definition 7 (Complexity). For Lρ
U with optimal solution R∗

ρ, ξ
∗
ρ, consider a

set W ⊆ Un and the associated problem Lρ
W with optimal solution R̃ρ, ξ̃ρ. The

set W is critical, if

R̃ρ = R∗
ρ and {ui | ξ∗

ρ,i > 0} ⊆ W.

The complexity c∗
ρ of R∗

ρ, ξ
∗
ρ is the cardinality of the smallest critical set. We

also call c∗
ρ the complexity of Lρ

U .
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Fig. 6. Lower bounds η on the containment probability as a function of the complexity
c, obtained from Theorem 1 for different confidence levels β.

If a sample ui has a value ξ∗
ρ,i > 0, its solution vector has a positive distance

to the prediction region, R∗
ρ. (i.e., [

¯
x∗

ρ, x̄
∗
ρ] for the rectangular case). Thus, the

complexity c∗
ρ is the number of samples for which sol(ui) /∈ R∗

ρ, plus the min-
imum number of samples needed on the boundary of the region to keep the
solution unchanged. We describe in Sect. 3.3 how we algorithmically determine
the complexity.

Example 2. In Fig. 5, the prediction region for ρ = 2 contains all solution vectors,
so ξ∗

2,i = 0∀i. Moreover, if we remove all but four solutions (the ones on the
boundary of the region), the optimal solution to problem Lρ

U remains unchanged,
so the complexity is c∗

1.12 = 0 + 4. Similarly, the complexity for ρ = 0.4 is
c∗
0.4 = 8 + 2 = 10 (8 solutions outside the region, and 2 on the boundary). ��

Recall that Definition 5 defines the containment probability of a generic predic-
tion region R, so contain(R∗

ρ) is the containment probability w.r.t. the optimal
solution to Lρ

U . We adapt the following theorem from [21], which gives a lower
bound on the containment probability contain(R∗

ρ) of an optimal solution to Lρ
U

for a predefined value of ρ. This lower bound is correct with a user-defined confi-
dence level of β ∈ (0, 1), which we typically choose close to one (e.g., β = 0.99).

Theorem 1. Let Un be a set of n samples, and let c∗ be the complexity of
problem Lρ

U . For any confidence level β ∈ (0, 1) and any upper bound d∗ ≥ c∗, it
holds that

P
n
{
contain

(
R∗

ρ

) ≥ η(d∗)
}

≥ β, (3)

where R∗
ρ is the prediction region for Lρ

U . Moreover, η is a function defined as
η(n) = 0, and otherwise, η(c) is the smallest positive real-valued solution to the
following polynomial equality in the t variable for a complexity of c:

(
n

c

)
tn−c − 1 − β

2n

n−1∑

i=c

(
i

c

)
ti−c − 1 − β

6n

4n∑

i=n+1

(
i

c

)
ti−c = 0. (4)

We provide the proof of Theorem 1 in [6, Appendix B.1]. With a probability
of at least β, Theorem 1 yields a correct lower bound. That is, if we solve Lρ

U
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for many more sets of n parameter samples (note that, as the samples are i.i.d.,
these sets are drawn according to the product probability P

n), the inequality in
Eq. (3) is incorrect for at most a 1 − β fraction of the cases. We plot the lower
bound η(c) as a function of the complexity c = 0, . . . , n in Fig. 6, for different
samples sizes n and confidence levels β. These figures show that an increased
complexity leads to a lower η, while increasing the sample size leads to a tighter
bound.

Example 3. We continue Example 2. Recall that the complexity for the outer
region in Fig. 5 is c∗

1.12 = 4. With Theorem 1, we compute that, for a confidence
level of β = 0.9, the containment probability for this prediction region is at least
η = 0.615 (cf. Figure 6a). For a stronger confidence level of β = 0.999, we obtain
a more conservative lower bound of η = 0.455. ��

3.3 An Algorithm for Computing Prediction Regions

We combine the previous results in our algorithm, which is outlined in Fig. 7.
The goal is to obtain a set of prediction regions as in Fig. 5 and their associated
lower bounds. To strictly solve the problem statement, assume k = 1 in the
exposition below. We first outline the complete procedure before detailing Steps
4 and 5.

As preprocessing steps, given a upCTMC (M, P), we first (1) sample a set
Un of n parameter values. Using M and Φ, a (2) model checking algorithm
then computes the solution vector solΦM(u) for each u ∈ Un, yielding the set of
solutions sol(Un). We then use sol(Un) as basis for (3) the scenario problem Lρ

U in
Eq. (2), which we solve for k predefined values ρ1, . . . , ρk, yielding k prediction
regions R∗

ρ1
, . . . R∗

ρk
. We (4) compute an upper bound d∗

ρ on the complexity c∗
ρ ∀ρ.

Finally, we (5) use the result in Theorem 1, for a given confidence β, to compute
the lower bound on the containment probability η(d∗

ρ) of R∗
ρ. Using Definition 6,

we can postprocess this region to a prediction region over the probability curves.

Step (3): Choosing values for ρ. Example 1 shows that relaxation of additional
solution vectors (and thus a change in the prediction region) only occurs at
critical values of ρ = 1

n , for n ∈ N. In practice, we will use ρ = 1
n+0.5 for ±10

values of n ∈ N to obtain gradients of prediction regions as in Sect. 6.

Step (4): Computing complexity. Computing the complexity c∗
ρ is a combinatorial

problem in general [30], because we must consider the removal of all combinations
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of the solutions on the boundary of the prediction region R∗
ρ. In practice, we

compute an upper bound d∗
ρ ≥ c∗

ρ on the complexity via a greedy algorithm.
Specifically, we iteratively solve Lρ

U in Eq. (2) with one more sample on the
boundary removed. If the optimal solution is unchanged, we conclude that this
sample does not contribute to the complexity. If the optimal solution is changed,
we put the sample back and proceed by removing a different sample. This greedy
algorithm terminates when we have tried removing all solutions on the boundary.

Step (5): Computing lower bounds. Theorem 1 characterizes a computable func-
tion B(d∗, n, β) that returns zero for d∗ = n (i.e., all samples are critical), and
otherwise uses the polynomial Eq. (4) to obtain η, which we solve with an approx-
imate root finding method in practice (see [31] for details on how to ensure that
we find the smallest root). For every upper bound on the complexity d∗ and
any requested confidence, we obtain the lower bound η = B(d∗, n, β) for the
containment probability w.r.t. the prediction region R∗

ρ.

4 Imprecise Sampling-Based Prediction Regions

Thus far, we have solved our problem statement under the assumption that
we compute the solution vectors precisely (up to numerics). For some models,
however, computing precise solutions is expensive. In such a case, we may choose
to compute an approximation, given as an interval on each entry of the solution
function. In this section, we deal with such imprecise solutions.

Setting. Formally, imprecise solutions are described by the bounds
sol−(u), sol+(u) ∈ R

m such that sol−(u) ≤ sol(u) ≤ sol+(u) holds with pointwise
inequalities. Our goal is to compute a prediction region R and a (high-confidence)
lower bound μ such that contain(R) ≥ μ, i.e., a lower bound on the probabil-
ity that any precise solution sol(u) is contained in R. However, we must now
compute R and contain(R) from the imprecise solutions sol−, sol+. Thus, we
aim to provide a guarantee with respect to the precise solution sol(u), based on
imprecise solutions.

Challenge. Intuitively, if we increase the (unknown) prediction region R∗ from
problem Lρ

U (for the unknown precise solutions) while also overapproximating
the complexity of Lρ

U , we obtain sound bounds. We formalize this idea as follows.

Lemma 1. Let R∗
ρ be the prediction region and c∗

ρ the complexity that result from
solving Lρ

U for the precise (unknown) solutions sol(Un). Given a set R ∈ R
n and

d ∈ N, for any confidence level β ∈ (0, 1), the following implication holds:

R∗
ρ ⊆ R and c∗

ρ ≤ d =⇒ P
n
{
contain

(
R

) ≥ η(d)
}

≥ β, (5)

where η(n) = 0, and otherwise, η(d) is the smallest positive real-valued solution
to the polynomial equality in Eq. (4).

The proof is in [6, Appendix B.2]. In what follows, we clarify how we compute
the appropriate R and d in Lemma 1. As we will see, in contrast to Sect. 3, these
results do not carry over to other definitions Lρ

U (for non-rectangular regions R).
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sol+(u1)

sol+(u2)
sol+(u3)

sol+(u4)
sol+(u5)

sol+(u6)

x̄+
ρ

...

Fig. 8. Imprecise solutions and the
upper bound x̄′

ρ of the prediction region.
Fig. 9. Complexity of the imprecise solu-
tion vs. that of the precise solution.

4.1 Prediction Regions on Imprecise Solutions

In this section, we show how to compute R ⊇ R∗
ρ, satisfying the first term in

the premise of Lemma 1. We construct a conservative box around the imprecise
solutions as in Fig. 9, containing both sol−(u) and sol+(u). We compute this box
by solving the following problem Gρ

U as a modified version of Lρ
U in Eq. (2):

Gρ
U : minimize ‖x̄ −

¯
x‖1 + ρ

n∑

i=1

‖ξi‖1 (6a)

subject to
¯
x − ξi ≤ sol−(ui), sol+(ui) ≤ x̄ + ξi ∀i = 1, . . . , n. (6b)

We denote the optimal solution of Gρ
U by [

¯
x′

ρ, x̄
′
ρ], ξ

′
ρ (recall that the opti-

mum to Lρ
U is written as [

¯
x∗

ρ, x̄
∗
ρ], ξ

∗
ρ).4 If a sample ui ∈ VM in problem Gρ

U
is relaxed (i.e., has a non-zero ξi), part of the interval [sol−(ui), sol+(ui)] is not
contained in the prediction region. The following result (for which the proof is
in [6, Appendix B.3]. relates Lρ

U and Gρ
U , showing that we can use [

¯
x′

ρ, x̄
′
ρ] as R

in Lemma 1.

Theorem 2. Given ρ, sample set Un, and prediction region [
¯
x′

ρ, x̄
′
ρ] to problem

Gρ
U , it holds that [

¯
x∗

ρ, x̄
∗
ρ] ⊆ [

¯
x′

ρ, x̄
′
ρ], with [

¯
x∗

ρ, x̄
∗
ρ] the optimal solution to Lρ

U .

We note that this result is not trivial. In particular, the entries ξi from both LPs
are incomparable, as are their objective functions. Instead, Theorem 2 relies on
two observations. First, due to the use of the 1-norm, the LP Gρ

U can be decom-
posed into n individual LPs, whose results combine into a solution to the original
LP. This allows us to consider individual dimensions. Second, the solution vec-
tors that are relaxed depend on the value of ρ and on their relative order, but
not on the precise position within that order, which is also illustrated by Exam-
ple 1. In combination with the observation from Example 1 that the outermost
samples are relaxed at the (relatively) highest ρ, we can provide conservative
guarantees on which samples are (or are surely not) relaxed. We formalize these
observations and provide a proof of Theorem 2 in [6, Appendix B.3].
4 We write [

¯
x∗

ρ, x̄∗
ρ] and [

¯
x′

ρ, x̄′
ρ], as results in Sect. 4 apply only to rectangular regions.
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4.2 Computing the Complexity

To satisfy the second term of the premise in Lemma 1, we compute an upper
bound on the complexity. We first present a negative result. Let the complexity
c′
ρ of problem Gρ

U be defined analogous to Definition 7, but with [
¯
x′

ρ, x̄
′
ρ] as the

region.

Lemma 2. In general, c∗
ρ ≤ c′

ρ does not hold.

Proof. In Fig. 9, the smallest critical set for the imprecise solutions are
those labeled {1, 2, 7}, while this set is {1, 3, 5, 7} under precise solutions, so
c∗
ρ > c′

ρ. ��
Thus, we cannot upper bound the complexity directly from the result to Gρ

U . We
can, however, determine the samples that are certainly not in any critical set
(recall Definition 7). Intuitively, a sample is surely noncritical if its (imprecise)
solution is strictly within the prediction region and does not overlap with any
solution on the region’s boundary. In Fig. 8, sample u6 is surely noncritical, but
sample u5 is not (whether u5 is critical depends on its precise solution). Formally,
let δR be the boundary5 of region [

¯
x′

ρ, x̄
′
ρ], and let B be the set of samples whose

solutions overlap with δR, which is B = {u ∈ Un : [sol−(u), sol+(u)]∩ δR �= ∅}.

Definition 8. For a region [
¯
x′

ρ, x̄
′
ρ], let I ⊂ [

¯
x′

ρ, x̄
′
ρ] be the rectangle of largest

volume, such that I ∩ [sol−(u), sol+(u)] = ∅ for any u ∈ B. A sample ui ∈ VM
is surely noncritical if [sol−(ui), sol+(ui)] ⊆ I. The set of all surely noncritical
samples w.r.t. the (unknown) prediction region [

¯
x∗

ρ, x̄
∗
ρ] is denoted by X ⊂ Un.

As a worst case, any sample not surely noncritical can be in the smallest critical
set, leading to the following bound on the complexity as required by Lemma 1.

Theorem 3. Let X be the set of surely noncritical samples. Then c∗
ρ ≤ |Un \X |.

The proof is in [6, Appendix B.4]. For imprecise solutions, the bound in
Theorem 3 is conservative but can potentially be improved, as discussed in the
following.

4.3 Solution Refinement Scheme

Often, we can refine imprecise solutions arbitrarily (at the cost of an increased
computation time). Doing so, we can improve the prediction regions and upper
bound on the complexity, which in turn improves the computed bound on the
containment probability. Specifically, we propose the following rule for refining
solutions. After solving Gρ

U for a given set of imprecise solutions, we refine the
solutions on the boundary of the obtained prediction region. We then resolve
problem Gρ

U , thus adding a loop back from (4) to (2) in our algorithm shown in
Fig. 7. In our experiments, we demonstrate that with this refinement scheme, we
iteratively improve our upper bound d ≥ c∗

ρ and the smallest superset R ⊇ R∗
ρ.

5 The boundary of a compact set is defined as its closure minus its interior [45].
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5 Batch Verification for CTMCs

One bottleneck in our method is to obtain the necessary number of solution
vectors sol(Un) by model checking. The following improvements, while mild, are
essential in our implementation and therefore deserve a brief discussion.

In general, computing sol(u) via model checking consists of two parts. First,
the high-level representation of the upCTMC —given in Prism [42], JANI [13],
or a dynamic fault tree6— is translated into a concrete CTMC M[u]. Then, from
M[u] we construct sol(u) using off-the-shelf algorithms [7]. We adapt the pipeline
by tailoring the translation and the approximate analysis as outlined below.

Our implementation supports two methods for building the concrete CTMC
for a parameter sample: (1) by first instantiating the valuation in the specification
and then building the resulting concrete CTMC, or (2) by first building the
pCTMC M (only once) and then instantiating it for each parameter sample to
obtain the concrete CTMC M[u]. Which method is faster depends on the specific
model (we only report results for the fastest method in Sect. 6 for brevity).

Partial models. To accelerate the time-consuming computation of solution vectors
by model-checking on large models, it is natural to abstract the models into smaller
models amenable to faster computations. Similar to ideas used for dynamic fault
trees [55] and infinite CTMCs [48], we employ an abstraction which only keeps the
most relevant parts of a model, i.e., states with a sufficiently large probability to be
reached from the initial state(s). Analysis on this partial model then yields best-
and worst-case results for each measure by assuming that all removed states are
either target states (best case) or are not (worst case), respectively. This method
returns imprecise solution vectors as used in Sect. 4, which can be refined up to an
arbitrary precision by retaining more states of the original model.

Similar to building the complete models, two approaches are possible to cre-
ate the partial models: (1) fixing the valuation and directly abstracting the con-
crete CTMC, or (2) first building the complete pCTMC and then abstracting the
concrete CTMC. We reuse partial models for similar valuations to avoid costly
computations. We cluster parameter valuations which are close to each other (in
Euclidean distance). For parameter valuations within one cluster, we reuse the
same partial model (in terms of the states), albeit instantiating it according to
the precise valuation.

6 Experiments

We answer three questions about (a prototype implementation of) our approach:

Q1. Can we verify CTMCs taking into account the uncertainty about the rates?
Q2. How well does our approach scale w.r.t. the number of measures and samples?
Q3. How does our approach compare to näıve baselines (to be defined below)?

Setup. We implement our approach using the explicit engine of Storm [37] and
the improvements of Sect. 5 to sample from upCTMCs in Python. Our current
6 Fault trees are a common formalism in reliability engineering [51].



40 T. S. Badings et al.

Table 1. Excerpt of the benchmark statistics (sampling time is per 100 CTMCs).

Model size Storm run time [s] Scen.opt. time [s]

Benchmark |Φ| #pars #states #trans Init. Sample (×100) N = 100 N = 200

SIR (140) 26 2 9 996 19 716 0.29 2947.29 18.26 63.27

SIR (140)a 26 2 9 996 19 716 0.29 544.27 25.11 129.66

Kanban (3) 4 13 58 400 446 400 4.42 46.95 2.28 6.69

Kanban (5) 4 13 2 546 432 24 460 016 253.39 4363.63 2.03 5.94

Polling (9) 2 2 6 912 36 864 0.64 22.92 2.13 6.66

buffer 2 6 5 632 21 968 0.48 20.70 1.21 4.15

Tandem (31) 2 5 2 016 6 819 0.11 862.41 5.19 24.30

rbc 40 6 2 269 12 930 0.01 1.40 5.27 16.88

rc (1,1) 25 21 8 401 49 446 27.20 74.90 5.75 20.34

rc (1,1)a 25 21 n/ab n/ab 0.02 2.35 29.23 150.61

rc (2,2)a 25 29 n/ab n/ab 0.03 27.77 24.86 132.63

hecs (2,1)a 25 5 n/ab n/ab 0.02 9.83 26.78 145.77

hecs (2,2)a 25 24 n/ab n/ab 0.02 194.25 33.06 184.32
a Computed using approximate model checking up to a relative gap between upper
bound sol+(u) and lower bound sol−(u) below 1% for every sample u ∈ VM.
b Model size is unknown, as the approximation does not build the full state-space.

Fig. 10. Prediction regions for the
SIR (60) benchmark with n = 400.

Fig. 11. Pareto front for the buffer
benchmark with n = 200 samples.

implementation is limited to pCTMC instantiations that are graph-preserving, i.e.
for anypair s, s′ ∈ S eitherR(s, s′)[u] = 0 orR(s, s′)[u] > 0 for allu.We solve opti-
mization problems using theECOS solver [29].All experiments ran single-threaded
on a computer with 32 3.7 GHz cores and 64 GB RAM. We show the effectiveness
of our method on a large number of publicly available pCTMC [35] and fault tree
benchmarks [50] across domains (details in [6, Appendix C]).

Q1. Applicability

An excerpt of the benchmark statistics is shown in Table 1 (see [6, Appendix C]
for the full table). For all but the smallest benchmarks, sampling and comput-
ing the solution vectors by model checking is more expensive than solving the
scenario problems. In the following, we illustrate that 100 samples are sufficient
to provide qualitatively good prediction regions and associated lower bounds.
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Table 2. Lower bounds μ̄ and standard deviation (SD), vs. the observed number of
1 000 additional solutions that indeed lie within the obtained regions.

(a) Kanban (3).

β = 0.9 β = 0.999 Frequentist

n μ̄ SD μ̄ SD Observed

100 0.862 0.000 0.798 0.000 959 ± 22.7

200 0.930 0.000 0.895 0.000 967 ± 17.4

400 0.965 0.001 0.947 0.001 984 ± 8.6

800 0.982 0.000 0.973 0.000 994 ± 3.2

(b) Railway crossing (1,1,hc).

β = 0.9 β = 0.999 Frequentist

n μ̄ SD μ̄ SD Observed

100 0.895 0.018 0.835 0.020 954 ± 26.8

200 0.945 0.007 0.912 0.008 980 ± 12.8

400 0.975 0.004 0.958 0.005 990 ± 8.3

800 0.986 0.002 0.977 0.003 995 ± 4.3

Plotting prediction regions. Figure 10 presents prediction regions on the extinction
probability of the disease in the SIR model and is analogous to the tubes in Fig. 2d
(see [6, Appendix C.1] for plots for various other benchmarks). These regions are
obtained by applying our algorithm with varying values for the cost of relaxation ρ.
For a confidence level of β = 99%, the widest (smallest) tube in Fig. 10 corresponds
to a lower bound probability of μ = 91.1% (μ = 23.9%). Thus, we conclude that,
with a confidence of at least 99%, the curve created by the CTMC for any sampled
parameter value will lie within the outermost region in Fig. 10 with a probability
of at least 91.1%. We highlight that our approach supports more general predic-
tion regions. We show n = 200 solution vectors for the buffer benchmark with
two measures in Fig. 11 and produce regions that approach the Pareto front. For
a confidence level of β = 99%, the outer prediction region is associated with a
lower bound probability of μ = 91.1%, while the inner region has a lower value of
μ = 66.2%. We present more plots in [6, Appendix C.1].

Tightness of the solution. In Table 2 we investigate the tightness of our results.
For the experiment, we set ρ = 1.1 and solve Lρ

U for different values of n, repeating
every experiment 10 times, resulting in the average bounds μ̄. Then, we sample
1 000 solutions and count the observed number of solutions contained in every pre-
diction regions, resulting in an empirical approximation of the containment prob-
ability. Recall that for ρ > 1, we obtain a prediction region that contains all solu-
tions, so this observed count grows toward n. The lower bounds grow toward the
empirical count for an increased n, with the smallest difference (RC, n = 800,
β = 0.9) being as small as 0.9%. Similar observations hold for other values of ρ.

Handling imprecise solutions. The approximate model checker is significantly
faster (seeTable 1 for SIR (140) andRC), at the cost of obtaining imprecise solution
vectors.7 For SIR (140), the sampling time is reduced from 49 to 9 min, while the
scenario optimization time is slightly higher at 129 s. This difference only grows
larger with the size of the CTMC. For the larger instances of RC and HECS,
computing exact solutions is infeasible at all (one HECS (2,2) sample alone takes
15 min). While the bounds on the containment probability under imprecise solu-

7 We terminate at a relative gap between upper/lower bound of the solution below 1%.
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Table 3. Run times in [s] for solving the scenario problems for SIR and RC with
ρ = 0.1 (timeout (TO) of 1 hour) for different sample sizes n and measures m.

(a) SIR (population 20).

n / m 50 100 200 400 800

100 0.97 1.59 3.36 9.17 25.41

200 3.69 7.30 22.91 59.45 131.78

400 29.43 76.13 153.03 310.67 640.70

800 261.97 491.73 955.77 1924.15 TO

(b) Railway crossing (1,1,hc).

n / m 50 100 200 400

100 1.84 3.40 8.18 24.14

200 6.35 14.56 45.09 113.09

400 34.74 96.68 203.77 427.80

800 292.32 579.09 1215.67 2553.98

tions may initially be poor (see Fig. 12a, which results in μ = 2.1%), we can
improve the results significantly using the refinement scheme proposed in Sect. 4.3.
For example, Fig. 12c shows the prediction region after refining 31 of the 100 solu-
tions, which yields μ = 74.7%. Thus, by iteratively refining only the imprecise solu-
tions on the boundary of the resulting prediction regions, we significantly tighten the
obtained bounds on the containment probability.

Q2. Scalability

In Table 3, we report the run times for steps (3)–(5) of our algorithm shown in
Fig. 7 (i.e., for solving the scenario problems, but not for computing the solution
vectors in Storm). Here, we solve problem Lρ

U for ρ = 0.1, with different num-
bers of samples and measures. Our approach scales well to realistic numbers of
samples (up to 800) and measures (up to 400). The computational complexity
of the scenario problems is largely independent of the size of the CTMC, and
hence, similar run times are observed across the benchmarks (cf. Table 1).

Q3. Comparison to baselines

We compare against two baselines: (1) Scenario optimization to analyze each
measure independently, yielding a separate probabilistic guarantee on each mea-
sure. (2) A frequentist (Monte Carlo) baseline, which samples a large number of
parameter values and counts the number of associated solutions within a region.

Fig. 12. Refining imprecise solution vectors (red boxes) for RC (2,2), n = 100. (Color
figure online)
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Analyzing measures independently. To show that analyzing a full set ofmeasures at
once, e.g., the complete probability curve, is essential, we compare our method to
the baseline that analyzes each measure independently and combines the obtained
bounds on each measure afterward. We consider the PCS benchmark with precise
samples and solve Lρ

U for ρ = 2 (see [6, Table 5] for details). For n = 100 samples
and β = 99%, our approach returns a lower bound probability of μ = 84.8%. By
contrast, the näıve baseline yields a lower bound of only 4.5%, and similar results
are observed for different values of n (cf. [6, Table 5 in Appendix C]). There are
two reasons for this large difference. First, the baseline applies Theorem 3 once
for each of the 25 measures, so it must use a more conservative confidence level of
β̃ = 1 − 1−β

25 = 0.9996. Second, the baseline takes the conjunction over the 25
independent lower bounds, which drastically reduces the obtained bound.

Frequentist baseline. The comparison to the frequentist baseline on the Kanban
and RC benchmarks yields the previously discussed results in Table 2. The results
in Tables 1 and 3 show that the time spent for sampling is (for most benchmarks)
significantly higher than for scenario optimization. Thus, our scenario-based app-
roach has a relatively low cost, while resulting in valuable guarantees which the
baseline does not give. To still obtain a high confidence in the result, a much
larger sample size is needed for the frequentist baseline than for our approach.

7 Related Work

Several verification approaches exist to handle uncertain Markov models.
For (discrete-time) interval Markov chains (DTMCs) or Markov decision pro-

cesses (MDPs), a number of approaches verify against all probabilities within the
intervals [32,39,46,53,54]. Lumpability of interval CTMCs is considered in [22].
In contrast to upCTMCs, interval Markov chains have no dependencies between
transition uncertainties and no distributions are attached to the intervals.

Parametric Markov models generally define probabilities or rates via functions
over the parameters. The standard parameter synthesis problem for discrete-time
models is to find all valuations of parameters that satisfies a specification. Tech-
niques range from computing a solution function over the parameters, to directly
solving the underlying optimization problems [24,28,33,40]. Parametric CTMCs
are investigated in [23,34], but are generally restricted to a few parameters. The
work [15] aims to find a robust parameter valuation in pCTMCs.

For all approaches listed so far, the results may be rather conservative, as no
prior information on the uncertainties (the intervals) is used. That is, the uncer-
tainty is not quantified and all probabilities or rates are treated equally as likely.
In our approach, we do not compute solution functions, as the underlying methods
are computationally expensive and usually restricted to a few parameters.

Quantified uncertainty is studied in [44]. Similarly to our work, the approach
draws parameter values from a probability distribution over the model param-
eters and analyzes the instantiated model via model checking. However, [44]
studies DTMCs and performs a frequentist (Monte Carlo) approach, cf. Sect. 6,
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to compute estimates for a single measure, without prediction regions. Moreover,
our approach requires significantly fewer samples, cf. the comparison in Sect. 6.

The work in [10,11] takes a sampling-driven Bayesian approach for pCTMCs.
In particular, they take a prior on the solution function over a single measure and
update it based on samples (potentially obtained via statistical model checking).
We assume no prior on the solution function, and, as mentioned before, do not
compute the solution function due to the expensive underlying computations.

Statistical model checking (SMC) [1,43] samples path in stochastic models
to perform model checking. This technique has been applied to numerous mod-
els [25–27,47], including CTMCs [52,57]. SMC analyzes a concrete CTMC by
sampling from the known transition rates, whereas for upCTMC these rates are
parametric.

Finally, scenario optimization [16,21] is widely used in control theory [14]
and recently in machine learning [20] and reliability engineering [49]. Within a
verification context, closest to our work is [5], which considers the verification
of single measures for uncertain MDPs. [5] relies on the so-called sampling-and-
discarding approach [17], while we use the risk-and-complexity perspective [31],
yielding better results for problems with many decision variables like we have.

8 Conclusion

This paper presents a novel approach to the analysis of parametric Markov
models with respect to a set of performance characteristics. In particular, we
provide a method that yields statistical guarantees on the typical performance
characteristics from a finite set of samples of those parameters. Our experiments
show that high-confidence results can be given based on a few hundred of sam-
ples. Future work includes supporting models with nondeterminism, exploiting
aspects of parametric models such as monotonicity, and integrating methods to
infer the distributions on the parameter space from observations.
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model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 27

28. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

29. Domahidi, A., Chu, E., Boyd, S.P.: ECOS: an SOCP solver for embedded systems.
In: ECC, pp. 3071–3076. IEEE (2013)

30. Garatti, S., Campi, M.C.: The risk of making decisions from data through the lens
of the scenario approach. IFAC-PapersOnLine 54(7), 607–612 (2021)

31. Garatti, S., Campi, M.: Risk and complexity in scenario optimization. Math. Pro-
gram. 191, 1–37 (2019)

32. Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov decision processes.
Artif. Intell. 122(1–2), 71–109 (2000)

33. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

34. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for proba-
bilistic time-bounded reachability. In: RTSS, pp. 173–182. IEEE CS (2008)

35. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

36. Haverkort, B.R., Hermanns, H., Katoen, J.P.: On the use of model checking tech-
niques for dependability evaluation. In: SRDS, pp. 228–237. IEEE CS (2000)

37. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Softw. Tools Technol. Transf. (2021)

38. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision dia-
grams to represent and analyse continuous time Markov chains. In: 3rd Inter-
national Workshop on the Numerical Solution of Markov Chains, pp. 188–207.
Citeseer (1999)

39. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277. IEEE CS (1991)

40. Junges, S., et al.: Parameter synthesis for Markov models. CoRR abs/1903.07993
(2019)

41. Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45.
ACM (2016)

42. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

43. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statisti-
cal Model Checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

44. Meedeniya, I., Moser, I., Aleti, A., Grunske, L.: Evaluating probabilistic models
with uncertain model parameters. Softw. Syst. Model. 13(4), 1395–1415 (2014)

45. Mendelson, B.: Introduction to topology. Courier Corporation (1990)
46. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time

verification of PCTL properties of MDPs with convex uncertainties. In: CAV.
LNCS, vol. 8044, pp. 527–542. Springer (2013)

https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23


Sampling-Based Verification of CTMCs with Uncertain Rates 47

47. Rao, K.D., Gopika, V., Rao, V.V.S.S., Kushwaha, H.S., Verma, A.K., Srividya, A.:
Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety
assessment. Reliab. Eng. Syst. Saf. 94(4), 872–883 (2009)

48. Roberts, R., Neupane, T., Buecherl, L., Myers, C.J., Zhang, Z.: STAMINA 2.0:
improving scalability of infinite-state stochastic model checking. In: Finkbeiner,
B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 319–331. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94583-1 16

49. Rocchetta, R., Crespo, L.G.: A scenario optimization approach to reliability-based
and risk-based design: soft-constrained modulation of failure probability bounds.
Reliab. Eng. Syst. Saf. 216, 107900 (2021)

50. Ruijters, E., et al.: FFORT: a benchmark suite for fault tree analysis. In: ESREL
(2019)

51. Ruijters, E., Stoelinga, M.I.A.: Fault tree analysis: a survey of the state-of-the-art
in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

52. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 26

53. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 394–410. Springer, Heidelberg (2006). https://doi.org/10.1007/
11691372 26

54. Skulj, D.: Discrete time Markov chains with interval probabilities. Int. J. Approx.
Reason. 50(8), 1314–1329 (2009)

55. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)

56. Wijesuriya, V.B., Abate, A.: Bayes-adaptive planning for data-efficient verification
of uncertain Markov decision processes. In: Parker, D., Wolf, V. (eds.) QEST 2019.
LNCS, vol. 11785, pp. 91–108. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30281-8 6

57. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-94583-1_16
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/978-3-030-30281-8_6
https://doi.org/10.1007/978-3-030-30281-8_6
http://creativecommons.org/licenses/by/4.0/

	Sampling-Based Verification of CTMCs with Uncertain Rates
	1 Introduction
	2 Problem Statement
	3 Precise Sampling-Based Prediction Regions
	3.1 Constructing Prediction Regions
	3.2 Bounding the Containment Probability
	3.3 An Algorithm for Computing Prediction Regions

	4 Imprecise Sampling-Based Prediction Regions
	4.1 Prediction Regions on Imprecise Solutions
	4.2 Computing the Complexity
	4.3 Solution Refinement Scheme

	5 Batch Verification for CTMCs
	6 Experiments
	7 Related Work
	8 Conclusion
	References




